Skip to main content

Advertisement

Log in

Imaging and Management of Heart Failure and Preserved Ejection Fraction

  • Imaging (Q Truong, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

The prevalence of heart failure with preserved ejection fraction (HFpEF) is rising and in some places, it is already the most prevalent form of heart failure. The usual treatments of HF do not improve mortality or outcomes in HFpEF, suggesting a distinct pathophysiology that remains poorly characterized. The neutrality of clinical trial results is also attributable to the heterogeneity of patient profiles, and by poor characterization offered by classical echocardiography parameters. Emerging imaging modalities may overcome this problem. We therefore aimed to summarize recent advances offered by cardiovascular imaging in disease characterization, and the implication of findings to new phenotype-specific treatment options.

Recent findings

Novel cardiovascular imaging techniques such as LV global longitudinal strain, left atrial strain, tissue characterization by magnetic resonance T1 time, as well as incorporation of systolic and diastolic stress testing offer greatly improved characterization, diagnosis, and stratification of disease pathogenesis. These techniques offer insight into identification of HFpEF sub-phenotypes that are resistant to, or responsive to therapies.

Summary

There is a growing body of evidence that novel cardiovascular imaging modalities are able to characterize HFpEF patients with much greater accuracy than current guideline-driven parameters. Whether this information can be synthesized to adequately stratify patients into sub-phenotypes with clearer disease pathogenesis amenable to targeted intervention will be of particular future interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

HFpEF:

Heart failure with preserved ejection fraction

AHA:

American Heart Association

ACC:

American College of Cardiology

HFSA:

Heart Failure Society of America

ESC:

European Society of Cardiology

LAVI:

Left atrial volume index

LVMI:

Left ventricular mass index

e′:

Early diastolic mitral annular velocity

E/e′:

Ratio of early diastolic trans-mitral to mitral annular velocities

BNP:

Brain natriuretic peptide

NT:

ProBNP N-terminal pro-B-type natriuretic peptide

PCWP:

Pulmonary capillary wedge pressures

GLS:

Global longitudinal strain

ECV:

Myocardial extracellular volume

References and Recommended Readings

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3):251–9.

    Article  CAS  Google Scholar 

  2. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Card Fail. 2017;23(8):628–51.

    Article  Google Scholar 

  3. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200.

    Article  Google Scholar 

  4. McKee PA, Castelli WP, McNamara PM, Kannel WB. The natural history of congestive heart failure: the Framingham study. N Engl J Med. 1971;285(26):1441–6.

    Article  CAS  Google Scholar 

  5. Madamanchi C, Alhosaini H, Sumida A, Runge MS. Obesity and natriuretic peptides, BNP and NT-proBNP: mechanisms and diagnostic implications for heart failure. Int J Cardiol. 2014;176(3):611–7.

    Article  Google Scholar 

  6. Maron BA, Cockrill BA, Waxman AB, Systrom DM. The invasive cardiopulmonary exercise test. Circulation. 2013;127(10):1157–64.

    Article  Google Scholar 

  7. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet (London, England). 2003;362(9386):777–81.

    Article  CAS  Google Scholar 

  8. Edelmann F, Wachter R, Schmidt AG, Kraigher-Krainer E, Colantonio C, Kamke W, et al. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. JAMA. 2013;309(8):781–91.

    Article  CAS  Google Scholar 

  9. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370(15):1383–92.

    Article  CAS  Google Scholar 

  10. •• Zheng SL, Chan FT, Nabeebaccus AA, Shah AM, McDonagh T, Okonko DO, et al. Drug treatment effects on outcomes in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Heart. 2018;104(5):407–15. Large recent meta-analysis evaluating the effect of pharmacological treatment in HFpEF.

    Article  Google Scholar 

  11. • Redfield MM, Anstrom KJ, Levine JA, Koepp GA, Borlaug BA, Chen HH, et al. Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med. 2015;373(24):2314–24. Recent multicenter double-bind pharmacological crossover study using isosorbide mononitrate in 110 HFpEF patients.

    Article  CAS  Google Scholar 

  12. Holland DJ, Kumbhani DJ, Ahmed SH, Marwick TH. Effects of treatment on exercise tolerance, cardiac function, and mortality in heart failure with preserved ejection fraction: a meta-analysis. J Am Coll Cardiol. 2011;57(16):1676–86.

    Article  Google Scholar 

  13. Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF, et al. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol. 2017;70(20):2476–86.

    Article  Google Scholar 

  14. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med. 2006;355(3):260–9.

    Article  CAS  Google Scholar 

  15. Shah AM, Solomon SD. Phenotypic and pathophysiological heterogeneity in heart failure with preserved ejection fraction. Eur Heart J. 2012;33(14):1716–7.

    Article  Google Scholar 

  16. Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. 2017;136(1):6–19.

    Article  CAS  Google Scholar 

  17. McMurray JJ, Carson PE, Komajda M, McKelvie R, Zile MR, Ptaszynska A, et al. Heart failure with preserved ejection fraction: clinical characteristics of 4133 patients enrolled in the I-PRESERVE trial. Eur J Heart Fail. 2008;10(2):149–56.

    Article  Google Scholar 

  18. Dalos D, Mascherbauer J, Zotter-Tufaro C, Duca F, Kammerlander AA, Aschauer S, et al. Functional status, pulmonary artery pressure, and clinical outcomes in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2016;68(2):189–99.

    Article  Google Scholar 

  19. Mohammed SF, Hussain I, AbouEzzeddine OF, Takahama H, Kwon SH, Forfia P, et al. Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation. 2014;130(25):2310–20.

    Article  Google Scholar 

  20. Santhanakrishnan R, Wang N, Larson MG, Magnani JW, McManus DD, Lubitz SA, et al. Atrial fibrillation begets heart failure and vice versa: temporal associations and differences in preserved versus reduced ejection fraction. Circulation. 2016;133(5):484–92.

    Article  Google Scholar 

  21. Ter Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ, Cheng C, et al. Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail. 2016;18(6):588–98.

    Article  Google Scholar 

  22. Elshazly MB, Senn T, Wu Y, Lindsay B, Saliba W, Wazni O, Cho L. Impact of atrial fibrillation on exercise capacity and mortality in heart failure with preserved ejection fraction: insights from cardiopulmonary stress testing. J Am Heart Assoc. 2017;6(11).

  23. Zile MR, Gottdiener JS, Hetzel SJ, McMurray JJ, Komajda M, McKelvie R, et al. Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation. 2011;124(23):2491–501.

    Article  Google Scholar 

  24. Anjan VY, Loftus TM, Burke MA, Akhter N, Fonarow GC, Gheorghiade M, et al. Prevalence, clinical phenotype, and outcomes associated with normal B-type natriuretic peptide levels in heart failure with preserved ejection fraction. Am J Cardiol. 2012;110(6):870–6.

    Article  CAS  Google Scholar 

  25. Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2016;134(1):73–90.

    Article  Google Scholar 

  26. Penicka M, Bartunek J, Trakalova H, Hrabakova H, Maruskova M, Karasek J, et al. Heart failure with preserved ejection fraction in outpatients with unexplained dyspnea: a pressure-volume loop analysis. J Am Coll Cardiol. 2010;55(16):1701–10.

    Article  Google Scholar 

  27. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure--abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350(19):1953–9.

    Article  CAS  Google Scholar 

  28. • Kosmala W, Przewlocka-Kosmala M, Marwick TH. Association of active and passive components of lv diastolic filling with exercise intolerance in heart failure with preserved ejection fraction: mechanistic insights from spironolactone response. JACC Cardiovascular imaging. 2017. Article provides insight into the relation between a novel non-invasive marker of active myocardial relaxation (untwisting rate), and exercise capacity in 194 patients.

  29. Maeder MT, Thompson BR, Brunner-La Rocca HP, Kaye DM. Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. J Am Coll Cardiol. 2010;56(11):855–63.

    Article  Google Scholar 

  30. Dorfs S, Zeh W, Hochholzer W, Jander N, Kienzle RP, Pieske B, et al. Pulmonary capillary wedge pressure during exercise and long-term mortality in patients with suspected heart failure with preserved ejection fraction. Eur Heart J. 2014;35(44):3103–12.

    Article  CAS  Google Scholar 

  31. Borlaug BA, Olson TP, Lam CS, Flood KS, Lerman A, Johnson BD, et al. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2010;56(11):845–54.

    Article  Google Scholar 

  32. Akiyama E, Sugiyama S, Matsuzawa Y, Konishi M, Suzuki H, Nozaki T, et al. Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. J Am Coll Cardiol. 2012;60(18):1778–86.

    Article  Google Scholar 

  33. Haykowsky MJ, Kouba EJ, Brubaker PH, Nicklas BJ, Eggebeen J, Kitzman DW. Skeletal muscle composition and its relation to exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Cardiol. 2014;113(7):1211–6.

    Article  Google Scholar 

  34. Dhakal BP, Malhotra R, Murphy RM, Pappagianopoulos PP, Baggish AL, Weiner RB, et al. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction: the role of abnormal peripheral oxygen extraction. Circulation Heart Failure. 2015;8(2):286–94.

    Article  Google Scholar 

  35. •• Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD, Osborne MT, et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J. 2018;39(10):840–9. Highlights strong link between coronary microvascular dysfunction to worse HFpEF phenotype and worse outcomes.

    Article  Google Scholar 

  36. Borlaug BA, Melenovsky V, Russell SD, Kessler K, Pacak K, Becker LC, et al. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation. 2006;114(20):2138–47.

    Article  Google Scholar 

  37. •• Kosmala W, Rojek A, Przewlocka-Kosmala M, Mysiak A, Karolko B, Marwick TH. Contributions of nondiastolic factors to exercise intolerance in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2016;67(6):659–70. Highlights significant contributions by impaired systolic and chronotropic exercise responses to worsening HFpEF phenotype.

    Article  Google Scholar 

  38. Melenovsky V, Hwang SJ, Redfield MM, Zakeri R, Lin G, Borlaug BA. Left atrial remodeling and function in advanced heart failure with preserved or reduced ejection fraction. Circulation Heart failure. 2015;8(2):295–303.

    Article  Google Scholar 

  39. Konstam MA, Abboud FM. Ejection Fraction: Misunderstood and overrated (changing the paradigm in categorizing heart failure). Circulation. 2017;135(8):717–9.

    Article  Google Scholar 

  40. Borlaug BA, Lam CS, Roger VL, Rodeheffer RJ, Redfield MM. Contractility and ventricular systolic stiffening in hypertensive heart disease insights into the pathogenesis of heart failure with preserved ejection fraction. J Am Coll Cardiol. 2009;54(5):410–8.

    Article  Google Scholar 

  41. Borlaug BA, Kane GC, Melenovsky V, Olson TP. Abnormal right ventricular-pulmonary artery coupling with exercise in heart failure with preserved ejection fraction. Eur Heart J. 2016;37(43):3293–302.

    Article  Google Scholar 

  42. Paulus WJ, Tschope C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28(20):2539–50.

    Article  Google Scholar 

  43. Sharifov OF, Schiros CG, Aban I, Denney TS, Gupta H. Diagnostic accuracy of tissue Doppler Index E/e′for evaluating left ventricular filling pressure and diastolic dysfunction/heart failure with preserved ejection fraction: a systematic review and meta-analysis. J Am Heart Assoc. 2016;5(1).

  44. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289(2):194–202.

    Article  Google Scholar 

  45. Hwang SJ, Melenovsky V, Borlaug BA. Implications of coronary artery disease in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2014;63(25 Pt A):2817–27.

    Article  Google Scholar 

  46. Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B, et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2014;63(5):447–56.

    Article  Google Scholar 

  47. Sengupta PP, Narula J. Reclassifying heart failure: predominantly subendocardial, subepicardial and transmural. Heart Fail Clin. 2008;4(3):379–82.

    Article  Google Scholar 

  48. • De Vore AD, McNulty S, Alenezi F, Ersboll M, Vader JM, Oh JK, et al. Impaired left ventricular global longitudinal strain in patients with heart failure with preserved ejection fraction: insights from the RELAX trial. Eur J Heart Fail. 2017;19(7):893–900. Provides associations of global longitudinal strain in 187 patients to biomarkers of collagen synthesis.

    Article  Google Scholar 

  49. •• Mordi IR, Singh S, Rudd A, Srinivasan J, Frenneaux M, Tzemos N, et al. Comprehensive echocardiographic and cardiac magnetic resonance evaluation differentiates among heart failure with preserved ejection fraction patients, hypertensive patients, and healthy control subjects. JACC Cardiovascular Imaging. 2018;11(4):577–85. Study highlights the utility of novel cardiac magnetic resonance imaging in the diagnosis of HFpEF.

    Article  Google Scholar 

  50. Nanayakkara S, Telles F, Evans S, Patel HC, Vizi D, William J, Marwick TH, Kaye D. Association of rest and exercise left ventricular strain with exercise haemodynamics in patients with heart failure with preserved ejection fraction. Heart, Lung and Circulation. 2018;27:S78–S79.

    Article  Google Scholar 

  51. •• Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, Liu L, et al. Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation. 2015;132(5):402–14. Highlights that left ventricular global longitudinal strain is an important determinant of outcomes in HFpEF.

    Article  CAS  Google Scholar 

  52. • Rommel KP, von Roeder M, Latuscynski K, Oberueck C, Blazek S, Fengler K, et al. Extracellular volume fraction for characterization of patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2016;67(15):1815–25. Cardiac magnetic resonance study showing that T1 mapping derived myocardial extracellular volume predicts invasively measured LV stiffness in HFpEF.

    Article  Google Scholar 

  53. Mascherbauer J, Marzluf BA, Tufaro C, Pfaffenberger S, Graf A, Wexberg P, et al. Cardiac magnetic resonance postcontrast T1 time is associated with outcome in patients with heart failure and preserved ejection fraction. Circulation Cardiovascular Imaging. 2013;6(6):1056–65.

    Article  Google Scholar 

  54. • Duca F, Kammerlander AA, Zotter-Tufaro C, Aschauer S, Schwaiger ML, Marzluf BA, Bonderman D, Mascherbauer J. Interstitial Fibrosis, Functional Status, and Outcomes in Heart Failure With Preserved Ejection Fraction: Insights From a Prospective Cardiac Magnetic Resonance Imaging Study. Circulation Cardiovascular imaging. 2016;9(12). T1 mapping study utilizing the modified Look-Locker inversion recovery (MOLLI) sequence showing shorter eventfree survival in patients with higher myocardial extracellular volume.

  55. •• Obokata M, Kane GC, Reddy YN, Olson TP, Melenovsky V, Borlaug BA. Role of Diastolic Stress Testing in the Evaluation for Heart Failure With Preserved Ejection Fraction: A Simultaneous Invasive-Echocardiographic Study. Circulation. 2017;135(9):825–38. Highlights the usefulness of exercise stress testing in the diagnosis of HFpEF

    Article  Google Scholar 

  56. • Kosmala W, Przewlocka-Kosmala M, Rojek A, Marwick TH. Comparison of the Diastolic Stress Test With a Combined Resting Echocardiography and Biomarker Approach to Patients With Exertional Dyspnea: Diagnostic and Prognostic Implications. JACC Cardiovascular imaging. 2018. Study of 171 patients showing that patients with abnormal diastolic response to exercise are at higher risk of cardiovascular hospitalization or death.

  57. Kosmala W, Przewlocka-Kosmala M, Rojek A, Mysiak A, Dabrowski A, Marwick TH. Association of Abnormal Left Ventricular Functional Reserve With Outcome in Heart Failure With Preserved Ejection Fraction. JACC Cardiovascular imaging. 2017.

  58. Abid L, Charfeddine S, Kammoun S. Relationship of left atrial global peak systolic strain with left ventricular diastolic dysfunction and brain natriuretic peptide level in end-stage renal disease patients with preserved left ventricular ejection fraction. J Echocardiogr. 2016;14(2):71–8.

    Article  Google Scholar 

  59. Kusunose K, Motoki H, Popovic ZB, Thomas JD, Klein AL, Marwick TH. Independent association of left atrial function with exercise capacity in patients with preserved ejection fraction. Heart. 2012;98(17):1311–7.

    Article  Google Scholar 

  60. • Santos AB, Roca GQ, Claggett B, Sweitzer NK, Shah SJ, Anand IS, et al. Prognostic relevance of left atrial dysfunction in heart failure with preserved ejection fraction. Circulation Heart Failure. 2016;9(4):e002763. Provides cues to the prognostic value of left atrial strain in HFpEF

  61. • Freed BH, Daruwalla V, Cheng JY, Aguilar FG, Beussink L, Choi A, Klein DA, Dixon D, Baldridge A, Rasmussen-Torvik LJ, Maganti K, Shah SJ. Prognostic utility and clinical significance of cardiac mechanics in heart failure with preserved ejection fraction: importance of left atrial strain. Circulation Cardiovascular imaging. 2016;9(3). Shows with confidence that abnormal left atrial strain in HFpEF is associated to poorer outcomes in HFpEF, revealing a relationship of greater magnitude than left or right ventricular measures.

  62. Telles F, Nanayakkara S, Evans S, Vizi D, William J, Marwick T, Kaye D. Impaired left atrial strain predict abnormal haemodynamics in heart failure with preserved ejection fraction. Heart, Lung and Circulation. 2018;27:S55.

    Article  Google Scholar 

  63. Santos AB, Kraigher-Krainer E, Gupta DK, Claggett B, Zile MR, Pieske B, et al. Impaired left atrial function in heart failure with preserved ejection fraction. Eur J Heart Fail. 2014;16(10):1096–103.

    Article  CAS  Google Scholar 

  64. Obokata M, Negishi K, Kurosawa K, Arima H, Tateno R, Ui G, et al. Incremental diagnostic value of la strain with leg lifts in heart failure with preserved ejection fraction. JACC Cardiovascular Imaging. 2013;6(7):749–58.

    Article  Google Scholar 

  65. Martos R, Baugh J, Ledwidge M, O’Loughlin C, Conlon C, Patle A, et al. Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation. 2007;115(7):888–95.

    Article  Google Scholar 

  66. Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circulation Heart Failure. 2010;3(5):588–95.

    Article  Google Scholar 

  67. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17(12):1321–60.

    Article  Google Scholar 

  68. • Hasenfuss G, Hayward C, Burkhoff D, Silvestry FE, McKenzie S, Gustafsson F, et al. A transcatheter intracardiac shunt device for heart failure with preserved ejection fraction (REDUCE LAP-HF): a multicentre, open-label, single-arm, phase 1 trial. Lancet (London, England). 2016;387(10025):1298–304. Novel therapeutic approach in HFpEF targeting elevated left atrial pressure with an interatrial shunt device.

    Article  Google Scholar 

  69. • Feldman T, Mauri L, Kahwash R, Litwin S, Ricciardi MJ, van der Harst P, et al. Transcatheter Interatrial Shunt Device for the Treatment of Heart Failure With Preserved Ejection Fraction (REDUCE LAP-HF I [Reduce Elevated Left Atrial Pressure in Patients With Heart Failure]): A Phase 2, Randomized, Sham-Controlled Trial. Circulation. 2018;137(4):364–75. 20.Early results of novel interatrial shunt device showing significant reduction in exercise pulmonary capillary wedge pressure.

    Article  Google Scholar 

  70. • Kaye DM, Nanayakkara S, Vizi D, Byrne M, Mariani JA. Effects of Milrinone on Rest and Exercise Hemodynamics in Heart Failure With Preserved Ejection Fraction. J Am Coll Cardiol. 2016;67(21):2554–6. Trial showing that potential of intravenous milrinone for therapeutics in HFpEF with significant reductions in exercise pulmonary capillary wedge pressure.

    Article  Google Scholar 

  71. Kitzman DW, Shah SJ. The HFpEF Obesity Phenotype: The Elephant in the Room. J Am Coll Cardiol. 2016;68(2):200–3.

    Article  Google Scholar 

  72. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015;131(3):269–79.

    Article  Google Scholar 

  73. •• Ravassa S, Trippel T, Bach D, Bachran D, Gonzalez A, Lopez B, Wachter R, Hasenfuss G, Delles C, Dominiczak AF, Pieske B, Diez J, Edelmann F. Biomarker-based phenotyping of myocardial fibrosis identifies patients with heart failure with preserved ejection fraction resistant to the beneficial effects of spironolactone: results from the Aldo-DHF trial. European journal of heart failure. 2018. Provides insight into a subgroup of HFpEF patients that is resistant to spironolactone therapy.

  74. •• Kosmala W, Rojek A, Przewlocka-Kosmala M, Wright L, Mysiak A, Marwick TH. Effect of Aldosterone Antagonism on Exercise Tolerance in Heart Failure With Preserved Ejection Fraction. J Am Coll Cardiol. 2016;68(17):1823–34. Provides insight into a subgroup of HFpEF patients that is responsive to spironolactone therapy.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Marwick MD, PhD, MPH.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telles, F., Marwick, T.H. Imaging and Management of Heart Failure and Preserved Ejection Fraction. Curr Treat Options Cardio Med 20, 90 (2018). https://doi.org/10.1007/s11936-018-0689-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-018-0689-9

Keywords

Navigation