Skip to main content

Advertisement

Log in

Biomarkers for Musculoskeletal Pain Conditions: Use of Brain Imaging and Machine Learning

  • Chronic Pain (R Staud, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Chronic musculoskeletal pain condition often shows poor correlations between tissue abnormalities and clinical pain. Therefore, classification of pain conditions like chronic low back pain, osteoarthritis, and fibromyalgia depends mostly on self report and less on objective findings like X-ray or magnetic resonance imaging (MRI) changes. However, recent advances in structural and functional brain imaging have identified brain abnormalities in chronic pain conditions that can be used for illness classification. Because the analysis of complex and multivariate brain imaging data is challenging, machine learning techniques have been increasingly utilized for this purpose. The goal of machine learning is to train specific classifiers to best identify variables of interest on brain MRIs (i.e., biomarkers). This report describes classification techniques capable of separating MRI-based brain biomarkers of chronic pain patients from healthy controls with high accuracy (70–92%) using machine learning, as well as critical scientific, practical, and ethical considerations related to their potential clinical application. Although self-report remains the gold standard for pain assessment, machine learning may aid in the classification of chronic pain disorders like chronic back pain and fibromyalgia as well as provide mechanistic information regarding their neural correlates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Institute of Medicine. Relieving pain in America: a blueprint for transforming prevention, care, education, and research. Washington, DC: National Academies Press; 2011.

    Google Scholar 

  2. Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Katz RS, Mease P, et al. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. 2010;62(5):600–10. doi:10.1002/acr.20140.

    Article  Google Scholar 

  3. Shamir L, Ling SM, Scott Jr WW, Bos A, Orlov N, Macura TJ, et al. Knee x-ray image analysis method for automated detection of osteoarthritis. IEEE Trans Biomed Eng. 2009;56(2):407–15. doi:10.1109/TBME.2008.2006025.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kirkwood RN, Resende RA, Magalhaes CM, Gomes HA, Mingoti SA, Sampaio RF. Application of principal component analysis on gait kinematics in elderly women with knee osteoarthritis. Rev Bras Fis. 2011;15(1):52–8.

    Article  Google Scholar 

  5. Frize M, Ogungbemile A. Estimating rheumatoid arthritis activity with infrared image analysis. Stud Health Technol Inform. 2012;180:594–8.

    PubMed  Google Scholar 

  6. Frampton D, Kerr J, Harrison TJ, Kellam P. Assessment of a 44 gene classifier for the evaluation of chronic fatigue syndrome from peripheral blood mononuclear cell gene expression. PLoS One. 2011;6(3):e16872. doi:10.1371/journal.pone.0016872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Apkarian AV, Hashmi JA, Baliki MN. Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain. 2011;152(3 Suppl):S49–64. doi:10.1016/j.pain.2010.11.010.

    Article  PubMed  Google Scholar 

  8. • Robinson ME, Staud R, Price DD. Pain measurement and brain activity: will neuroimages replace pain ratings? J Pain: Off J Am Pain Soc. 2013;14(4):323–7. doi:10.1016/j.jpain.2012.05.007. This critical review summarized the limitations of neuroimaging to replace pain self-report. It also emphasized that neuroimaging will never replace pain self-report except in individuals with mental conditions or limited levels of consciousness.

  9. Wortolowska K. How neuroimaging can help us to visualise and quantify pain? Eur J Pain Suppl. 2011;5(S2):323–7.

    Article  Google Scholar 

  10. Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci. 2013;14(7):502–11. doi:10.1038/nrn3516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brekelmans MP, Fens N, Brinkman P, Bos LD, Sterk PJ, Tak PP, et al. Smelling the diagnosis: the electronic nose as diagnostic tool in inflammatory arthritis. A case-reference study. PloS One. 2016;11(3):e0151715. doi:10.1371/journal.pone.0151715.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rizzo G, Raffeiner B, Coran A, Ciprian L, Fiocco U, Botsios C, et al. Pixel-based approach to assess contrast-enhanced ultrasound kinetics parameters for differential diagnosis of rheumatoid arthritis. J Med Imaging (Bellingham). 2015;2(3):034503. doi:10.1117/1.JMI.2.3.034503.

    Article  Google Scholar 

  13. Mackey SC. Central neuroimaging of pain. J Pain: Off J Am Pain Soc. 2013;14(4):328–31. doi:10.1016/j.jpain.2013.01.001.

    Article  Google Scholar 

  14. Borsook D, Becerra L, Hargreaves R. Biomarkers for chronic pain and analgesia. Part 1: the need, reality, challenges, and solutions. Discov Med. 2011;11(58):197–207.

    PubMed  Google Scholar 

  15. Borsook D, Becerra L, Hargreaves R. Biomarkers for chronic pain and analgesia. Part 2: how, where, and what to look for using functional imaging. Discov Med. 2011;11(58):209–19.

    PubMed  Google Scholar 

  16. • Callan D, Mills L, Nott C, England R, England S. A tool for classifying individuals with chronic back pain: using multivariate pattern analysis with functional magnetic resonance imaging data. PloS One. 2014;9(6):e98007. doi:10.1371/journal.pone.0098007. This study employed supervised machine learning techniques, specifically sparse logistic regression, to train a classifier of chronic back pain based on contrast images using a leave-one-out cross-validation procedure. It correctly classified 92.3% of the chronic pain group and 92.3% of the normal controls.

  17. Lu HC, Hsieh JC, Lu CL, Niddam DM, Wu YT, Yeh TC, et al. Neuronal correlates in the modulation of placebo analgesia in experimentally-induced esophageal pain: a 3T-fMRI study. Pain. 2010;148(1):75–83. doi:10.1016/j.pain.2009.10.012.

    Article  PubMed  Google Scholar 

  18. Pustilnik AC. Imaging brains, changing minds: how pain neuroimaging can inform the law. Alabama Law Rev. 2015;66(5).

  19. • Letzen JE, Boissoneault J, Sevel LS, Robinson ME. Test-retest reliability of pain-related functional brain connectivity compared to pain self-report. Pain. 2016;157(3):546–51. doi:10.1097/j.pain.0000000000000356. This study examined the test-retest reliability for functional connectivity MRI (fcMRI) of pain-related brain regions and self-reported pain. Intraclass correlations coefficients for fcMRI values varied widely (range = −.174–.766), whereas intraclass correlations coefficients for VAS scores ranged from .906 to .947. Overall, self-reported pain was more reliable than fcMRI data.

  20. Nielsen CS, Price DD, Vassend O, Stubhaug A, Harris JR. Characterizing individual differences in heat-pain sensitivity. Pain. 2005;119(1–3):65–74. doi:10.1016/j.pain.2005.09.018.

    Article  PubMed  Google Scholar 

  21. Slesinger D, Archer RP, Duane W. MMPI-2 characteristics in a chronic pain population. Assessment. 2002;9(4):406–14.

    Article  PubMed  Google Scholar 

  22. Takekawa KS, Goncalves JS, Moriguchi CS, Coury HJ, Sato TO. Can a self-administered questionnaire identify workers with chronic or recurring low back pain? Ind Health. 2015;53(4):340–5. doi:10.2486/indhealth.2014-0241.

    Article  PubMed  PubMed Central  Google Scholar 

  23. •• Robinson ME, O’Shea AM, Craggs JG, Price DD, Letzen JE, Staud R. Comparison of machine classification algorithms for fibromyalgia: neuroimages versus self-report. J Pain: Off J Am Pain Soc. 2015;16(5):472–7. doi:10.1016/j.jpain.2015.02.002. Separate models representing brain volumes, mood ratings, and pain intensity ratings were estimated across several ML algorithms. Structural magnetic resonance imaging data from fibromyalgia patients and healthy controls and self-report data of pain intensity and mood were used. Classification accuracy of brain volumes ranged from 53 to 76%, whereas mood and pain intensity ratings ranged from 79 to 96% and 83 to 96%, respectively. Overall, models derived from self-report data outperformed neuroimaging models.

  24. Friend R, Bennett RM. Distinguishing fibromyalgia from rheumatoid arthritis and systemic lupus in clinical questionnaires: an analysis of the revised Fibromyalgia Impact Questionnaire (FIQR) and its variant, the Symptom Impact Questionnaire (SIQR), along with pain locations. Arthritis Res Ther. 2011;13(2):R58. doi:10.1186/ar3311.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Perrot S, Bouhassira D, Fermanian J, Cercle d’Etude de la Douleur en R. Development and validation of the Fibromyalgia Rapid Screening Tool (FiRST). Pain. 2010;150(2):250–6. doi:10.1016/j.pain.2010.03.034.

    Article  PubMed  Google Scholar 

  26. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97.

    Google Scholar 

  27. Pontil M, Verri A. Properties of support vector machines. Neural Comput. 1998;10(4):955–74.

    Article  CAS  PubMed  Google Scholar 

  28. Bagarinao E, Johnson KA, Martucci KT, Ichesco E, Farmer MA, Labus J, et al. Preliminary structural MRI based brain classification of chronic pelvic pain: a MAPP network study. Pain. 2014;155(12):2502–9. doi:10.1016/j.pain.2014.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ung H, Brown JE, Johnson KA, Younger J, Hush J, Mackey S. Multivariate classification of structural MRI data detects chronic low back pain. Cereb Cortex. 2014;24(4):1037–44. doi:10.1093/cercor/bhs378.

    Article  PubMed  Google Scholar 

  30. Labus JS, Van Horn JD, Gupta A, Alaverdyan M, Torgerson C, Ashe-McNalley C, et al. Multivariate morphological brain signatures predict patients with chronic abdominal pain from healthy control subjects. Pain. 2015;156(8):1545–54. doi:10.1097/j.pain.0000000000000196.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Le Cessie S, Van Houwelingen JC. Ridge estimators in logistic regression. Appl Stat. 1992;41(1):191–201.

    Article  Google Scholar 

  32. Langley P, Iba W, Thompson K. An analysis of Bayesian classifiers. AAAI. 1992;90:223–8.

    Google Scholar 

  33. Aha DW, Kibler D, Albert MK. Instance-based learning algorithms. Mach Learn. 1991;6(1):37–66. doi:10.1023/A:1022689900470.

    Google Scholar 

  34. Arora R. Comparative analysis of classification algorithms on different datasets using WEKA. Int J Comput Appl. 2012;54(13):21–5.

    Google Scholar 

  35. Quinlan JR. C4.5 programs for machine learning. San Mateo: Morgan Kaufmann; 1992.

    Google Scholar 

  36. Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Stat Soc B Met. 1996;58(1):267–88.

    Google Scholar 

  37. Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med. 2001;23(1):89–109.

    Article  CAS  PubMed  Google Scholar 

  38. Nair SS, French RM, Laroche D, Thomas E. The application of machine learning algorithms to the analysis of electromyographic patterns from arthritic patients. IEEE Trans Neural Syst Rehabil Eng. 2010;18(2):174–84. doi:10.1109/TNSRE.2009.2032638.

    Article  PubMed  Google Scholar 

  39. Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep learning in biomedicine. Mol Pharm. 2016;13(5):1445–54. doi:10.1021/acs.molpharmaceut.5b00982.

    Article  CAS  PubMed  Google Scholar 

  40. Schnack HG, Kahn RS. Detecting neuroimaging biomarkers for psychiatric disorders: sample size matters. Front Psych. 2016;7:50. doi:10.3389/fpsyt.2016.00050.

    Google Scholar 

  41. Siegel JS, Ramsey LE, Snyder AZ, Metcalf NV, Chacko RV, Weinberger K, et al. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc Natl Acad Sci U S A. 2016. doi:10.1073/pnas.1521083113.

    Google Scholar 

  42. Woo CW, Wager TD. Neuroimaging-based biomarker discovery and validation. Pain. 2015;156(8):1379–81. doi:10.1097/j.pain.0000000000000223.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30. doi:10.1161/CIRCULATIONAHA.115.001593.

    Article  PubMed  Google Scholar 

  44. • Robinson M, Boissoneault J, Sevel L, Letzen J, Staud R. The effect of base rate on the predictive value of brain biomarkers. J Pain. 2016;17(6):637–41. doi:10.1016/j.jpain.2016.01.476. Results of this study strongly suggest that many proposed brain biomarkers perform quite poorly when realistic illness prevalence base rates are taken into account.

  45. Lueken U, Zierhut KC, Hahn T, Straube B, Kircher T, Reif A, et al. Neurobiological markers predicting treatment response in anxiety disorders: a systematic review and implications for clinical application. Neurosci Biobehav Rev. 2016;66:143–62. doi:10.1016/j.neubiorev.2016.04.005.

    Article  PubMed  Google Scholar 

  46. Buckalew N, Haut MW, Aizenstein H, Morrow L, Perera S, Kuwabara H, et al. Differences in brain structure and function in older adults with self-reported disabling and nondisabling chronic low back pain. Pain Med. 2010;11(8):1183–97. doi:10.1111/j.1526-4637.2010.00899.x.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Geha PY, Baliki MN, Harden RN, Bauer WR, Parrish TB, Apkarian AV. The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron. 2008;60(4):570–81. doi:10.1016/j.neuron.2008.08.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gustin SM, Peck CC, Cheney LB, Macey PM, Murray GM, Henderson LA. Pain and plasticity: is chronic pain always associated with somatosensory cortex activity and reorganization? J Neurosci: Off J Soc Neurosci. 2012;32(43):14874–84. doi:10.1523/JNEUROSCI.1733-12.2012.

    Article  CAS  Google Scholar 

  49. Greve DN. An absolute beginner’s guide to surface- and voxel-based morphometric analysis. ISMRM 19th Annual Meeting & Exhibition. 2011;7–13.

  50. Ashburner J, Friston K. Morphometry. In: Ashburner J, editor. Human brain function. 2nd ed. Cambridge: Academic; 2004. p. 707–22.

    Google Scholar 

  51. Fischl B, Liu A, Dale AM. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging. 2001;20(1):70–80. doi:10.1109/42.906426.

    Article  CAS  PubMed  Google Scholar 

  52. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55.

    Article  CAS  PubMed  Google Scholar 

  53. Baliki MN, Schnitzer TJ, Bauer WR, Apkarian AV. Brain morphological signatures for chronic pain. PLoS One. 2011;6(10):e26010. doi:10.1371/journal.pone.0026010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci: Off J Soc Neurosci. 2004;24(46):10410–5. doi:10.1523/JNEUROSCI.2541-04.2004.

    Article  CAS  Google Scholar 

  55. Schmidt-Wilcke T, Luerding R, Weigand T, Jurgens T, Schuierer G, Leinisch E, et al. Striatal grey matter increase in patients suffering from fibromyalgia—a voxel-based morphometry study. Pain. 2007;132 Suppl 1:S109–16. doi:10.1016/j.pain.2007.05.010.

    Article  PubMed  Google Scholar 

  56. Burgmer M, Gaubitz M, Konrad C, Wrenger M, Hilgart S, Heuft G, et al. Decreased gray matter volumes in the cingulo-frontal cortex and the amygdala in patients with fibromyalgia. Psychosom Med. 2009;71(5):566–73. doi:10.1097/PSY.0b013e3181a32da0.

    Article  PubMed  Google Scholar 

  57. Puri BK, Agour M, Gunatilake KD, Fernando KA, Gurusinghe AI, Treasaden IH. Reduction in left supplementary motor area grey matter in adult female fibromyalgia sufferers with marked fatigue and without affective disorder: a pilot controlled 3-T magnetic resonance imaging voxel-based morphometry study. J Int Med Res. 2010;38(4):1468–72.

    Article  CAS  PubMed  Google Scholar 

  58. Robinson ME, Craggs JG, Price DD, Perlstein WM, Staud R. Gray matter volumes of pain-related brain areas are decreased in fibromyalgia syndrome. J Pain: Off J Am Pain Soc. 2011;12(4):436–43. doi:10.1016/j.jpain.2010.10.003.

    Article  Google Scholar 

  59. Sundermann B, Burgmer M, Pogatzki-Zahn E, Gaubitz M, Stuber C, Wessolleck E, et al. Diagnostic classification based on functional connectivity in chronic pain: model optimization in fibromyalgia and rheumatoid arthritis. Acad Radiol. 2014;21(3):369–77. doi:10.1016/j.acra.2013.12.003.

    Article  PubMed  Google Scholar 

  60. •• López-Solà M, Woo CW, Pujol J, Deus J, Harrison BJ, Monfort J, Wager TD. Towards a neurophysiological signature for fibromyalgia. Pain. 2016. A ‘Multisensory’ classifier trained on non-painful sensory stimulation revealed a brain signature for FM with high sensitivity and specificity. This study characterized individual FM patients based on symptom-related brain features.

  61. Detre JA, Wang J. Technical aspects and utility of fMRI using BOLD and ASL. Clin Neurophysiol. 2002;113(5):621–34.

    Article  PubMed  Google Scholar 

  62. Howseman AM, Bowtell RW. Functional magnetic resonance imaging: imaging techniques and contrast mechanisms. Philos Trans R Soc Lond B Biol Sci. 1999;354(1387):1179–94. doi:10.1098/rstb.1999.0473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen JJ, Jann K, Wang DJ. Characterizing resting-state brain function using arterial spin labeling. Brain Connect. 2015;5(9):527–42. doi:10.1089/brain.2015.0344.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004;23 Suppl 1:S208–19. doi:10.1016/j.neuroimage.2004.07.051.

    Article  PubMed  Google Scholar 

  65. Giesecke T, Gracely RH, Grant MA, Nachemson A, Petzke F, Williams DA, et al. Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum. 2004;50(2):613–23. doi:10.1002/art.20063.

    Article  PubMed  Google Scholar 

  66. Wager TD, Atlas LY, Lindquist MA, Roy M, Woo CW, Kross E. An fMRI-based neurologic signature of physical pain. N Engl J Med. 2013;368(15):1388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant R01 NR014049-01

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Staud.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Chronic Pain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boissoneault, J., Sevel, L., Letzen, J. et al. Biomarkers for Musculoskeletal Pain Conditions: Use of Brain Imaging and Machine Learning. Curr Rheumatol Rep 19, 5 (2017). https://doi.org/10.1007/s11926-017-0629-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-017-0629-9

Keywords

Navigation