Skip to main content

Advertisement

Log in

Circadian Rhythms and Substance Abuse: Chronobiological Considerations for the Treatment of Addiction

  • Sleep Disorders (P Gehrman, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Reward-related learning, including that associated with drugs of abuse, is largely mediated by the dopaminergic mesolimbic pathway. Mesolimbic neurophysiology and motivated behavior, in turn, are modulated by the circadian timing system which generates ∼24-h rhythms in cellular activity. Both drug taking and seeking and mesolimbic dopaminergic neurotransmission can vary widely over the day. Moreover, circadian clock genes are expressed in ventral tegmental area dopaminergic cells and in mesolimbic target regions where they can directly modulate reward-related neurophysiology and behavior. There also exists a reciprocal influence between drug taking and circadian timing as the administration of drugs of abuse can alter behavioral rhythms and circadian clock gene expression in mesocorticolimbic structures. These interactions suggest that manipulations of the circadian timing system may have some utility in the treatment of substance abuse disorders. Here, the literature on bidirectional interactions between the circadian timing system and drug taking is briefly reviewed, and potential chronotherapeutic considerations for the treatment of addiction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2014;24:90–9.

    Article  CAS  PubMed  Google Scholar 

  3. Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42:201–6.

    Article  CAS  PubMed  Google Scholar 

  4. Lehman MN, Silver R, Gladstone WR, et al. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci. 1987;7:1626–38.

    CAS  PubMed  Google Scholar 

  5. Li S, Zhang L. Circadian Control of Global Transcription. Biomed Res Int. 2015;2015:187809.

    PubMed  PubMed Central  Google Scholar 

  6. Baik JH. Dopamine signaling in reward-related behaviors. Front Neural Circuits. 2013;7:152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Luscher C. Drug-evoked synaptic plasticity causing addictive behavior. J Neurosci. 2013;33:17641–6.

    Article  CAS  PubMed  Google Scholar 

  8. Russo SJ, Dietz DM, Dumitriu D, et al. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 2010;33:267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Terman M, Terman JS. Control of the rat’s circadian self-stimulation rhythm by light-dark cycles. Physiol Behav. 1975;14:781–9.

    Article  CAS  PubMed  Google Scholar 

  10. Terman M, Terman JS. Circadian rhythm of brain self-stimulation behavior. Science. 1970;168:1242–4.

    Article  CAS  PubMed  Google Scholar 

  11. Fitch TE, Roberts DC. The effects of dose and access restrictions on the periodicity of cocaine self-administration in the rat. Drug Alcohol Depend. 1993;33:119–28.

    Article  CAS  PubMed  Google Scholar 

  12. Negus SS, Mello NK, Lukas SE, Mendelson JH. Diurnal patterns of cocaine and heroin self-administration in rhesus monkeys responding under a schedule of multiple daily sessions. Behav Pharmacol. 1995;6:763–75.

    Article  CAS  PubMed  Google Scholar 

  13. Roberts DC, Brebner K, Vincler M, Lynch WJ. Patterns of cocaine self-administration in rats produced by various access conditions under a discrete trials procedure. Drug Alcohol Depend. 2002;67:291–9.

    Article  CAS  PubMed  Google Scholar 

  14. Deneau G, Yanagita T, Seevers MH. Self-administration of psychoactive substances by the monkey. Psychopharmacologia. 1969;16:30–48.

    Article  CAS  PubMed  Google Scholar 

  15. Webb IC, Baltazar RM, Wang X, et al. Diurnal variations in natural and drug reward, mesolimbic tyrosine hydroxylase, and clock gene expression in the male rat. J Biol Rhythms. 2009;24:465–76.

    Article  CAS  PubMed  Google Scholar 

  16. Bass CE, Jansen HT, Roberts DC. Free-running rhythms of cocaine self-administration in rats held under constant lighting conditions. Chronobiol Int. 2010;27:535–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Teneggi V, Tiffany ST, Squassante L, et al. Effect of sustained-release (SR) bupropion on craving and withdrawal in smokers deprived of cigarettes for 72 h. Psychopharmacology (Berl). 2005;183:1–12.

    Article  CAS  Google Scholar 

  18. Teneggi V, Tiffany ST, Squassante L, et al. Smokers deprived of cigarettes for 72 h: effect of nicotine patches on craving and withdrawal. Psychopharmacology (Berl). 2002;164:177–87.

    Article  CAS  Google Scholar 

  19. Ren ZY, Zhang XL, Liu Y, et al. Diurnal variation in cue-induced responses among protracted abstinent heroin users. Pharmacol Biochem Behav. 2009;91:468–72.

    Article  CAS  PubMed  Google Scholar 

  20. Baltazar RM, Coolen LM, Webb IC. Diurnal rhythms in neural activation in the mesolimbic reward system: critical role of the medial prefrontal cortex. Eur J Neurosci. 2013;38:2319–27.

    Article  PubMed  Google Scholar 

  21. • Dominguez-Lopez S, Howell RD, Lopez-Canul MG, et al. Electrophysiological characterization of dopamine neuronal activity in the ventral tegmental area across the light–dark cycle. Synapse. 2014;68:454–67. This in vivo electrophysiological study shows a baseline diurnal rhythm in the number of spontaneously active VTA DA neurons with a nadir near the light-to-dark transition.

    Article  CAS  PubMed  Google Scholar 

  22. Webb IC, Lehman MN, Coolen LM. Diurnal and circadian regulation of reward-related neurophysiology and behavior. Physiol Behav. 2015;143:58–69.

    Article  CAS  PubMed  Google Scholar 

  23. Paulson PE, Robinson TE. Relationship between circadian changes in spontaneous motor activity and dorsal versus ventral striatal dopamine neurotransmission assessed with on-line microdialysis. Behav Neurosci. 1994;108:624–35.

    Article  CAS  PubMed  Google Scholar 

  24. Castaneda TR, de Prado BM, Prieto D, Mora F. Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J Pineal Res. 2004;36:177–85.

    Article  CAS  PubMed  Google Scholar 

  25. •• Chung S, Lee EJ, Yun S, et al. Impact of circadian nuclear receptor REV-ERBalpha on midbrain dopamine production and mood regulation. Cell. 2014;157:858–68. This rodent study demonstrates that rev-erbα directly regulates mesolimbic dopaminergic neurotransmission.

    Article  CAS  PubMed  Google Scholar 

  26. Hampp G, Ripperger JA, Houben T, et al. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol. 2008;18:678–83.

    Article  CAS  PubMed  Google Scholar 

  27. Ferris MJ, Espana RA, Locke JL, et al. Dopamine transporters govern diurnal variation in extracellular dopamine tone. Proc Natl Acad Sci U S A. 2014;111:E2751–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boivin DB, Czeisler CA, Dijk DJ, et al. Complex interaction of the sleep-wake cycle and circadian phase modulates mood in healthy subjects. Arch Gen Psychiatry. 1997;54:145–52.

    Article  CAS  PubMed  Google Scholar 

  29. Murray G, Nicholas CL, Kleiman J, et al. Nature’s clocks and human mood: the circadian system modulates reward motivation. Emotion. 2009;9:705–16.

    Article  PubMed  Google Scholar 

  30. Hasler BP, Forbes EE, Franzen PL. Time-of-day differences and short-term stability of the neural response to monetary reward: a pilot study. Psychiatry Res. 2014;224:22–7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sesack SR, Carr DB, Omelchenko N, Pinto A. Anatomical substrates for glutamate-dopamine interactions: evidence for specificity of connections and extrasynaptic actions. Ann N Y Acad Sci. 2003;1003:36–52.

    Article  CAS  PubMed  Google Scholar 

  32. Sesack SR, Deutch AY, Roth RH, Bunney BS. Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol. 1989;290:213–42.

    Article  CAS  PubMed  Google Scholar 

  33. Peters J, Kalivas PW, Quirk GJ. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem. 2009;16:279–88.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Van den Oever MC, Spijker S, Smit AB, De Vries TJ. Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev. 2010;35:276–84.

    Article  PubMed  Google Scholar 

  35. Chen BT, Yau HJ, Hatch C, et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature. 2013;496:359–62.

    Article  CAS  PubMed  Google Scholar 

  36. Perez-Cruz C, Simon M, Flugge G, et al. Diurnal rhythm and stress regulate dendritic architecture and spine density of pyramidal neurons in the rat infralimbic cortex. Behav Brain Res. 2009;205:406–13.

    Article  PubMed  Google Scholar 

  37. Angeles-Castellanos M, Mendoza J, Escobar C. Restricted feeding schedules phase shift daily rhythms of c-Fos and protein Per1 immunoreactivity in corticolimbic regions in rats. Neuroscience. 2007;144:344–55.

    Article  CAS  PubMed  Google Scholar 

  38. Baltazar RM, Coolen LM, Webb IC. Medial prefrontal cortex inactivation attenuates the diurnal rhythm in amphetamine reward. Neuroscience. 2014;258:204–10.

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi JS. Molecular components of the circadian clock in mammals. Diabetes Obes Metab. 2015;17 Suppl 1:6–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gekakis N, Staknis D, Nguyen HB, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998;280:1564–9.

    Article  CAS  PubMed  Google Scholar 

  41. Yoo SH, Ko CH, Lowrey PL, et al. A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo. Proc Natl Acad Sci U S A. 2005;102:2608–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van der Horst GT, Muijtjens M, Kobayashi K, et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature. 1999;398:627–30.

    Article  PubMed  Google Scholar 

  43. Yu W, Nomura M, Ikeda M. Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2. Biochem Biophys Res Commun. 2002;290:933–41.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng B, Albrecht U, Kaasik K, et al. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell. 2001;105:683–94.

    Article  CAS  PubMed  Google Scholar 

  45. McClung CA, Sidiropoulou K, Vitaterna M, et al. Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc Natl Acad Sci U S A. 2005;102:9377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. •• Ozburn AR, Falcon E, Twaddle A, et al. Direct regulation of diurnal Drd3 expression and cocaine reward by NPAS2. Biol Psychiatry. 2015;77:425–33. This rodent study demonstrates that the circadian clock gene npas2 acts in the NAc to regulate dopaminergic neurotransmission and drug reward.

    Article  CAS  PubMed  Google Scholar 

  47. Coque L, Mukherjee S, Cao JL, et al. Specific role of VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but not depression-related behavior in the ClockDelta19 mouse model of mania. Neuropsychopharmacology. 2011;36:1478–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ozburn AR, Larson EB, Self DW, McClung CA. Cocaine self-administration behaviors in ClockDelta19 mice. Psychopharmacology (Berl). 2012;223:169–77.

    Article  CAS  Google Scholar 

  49. Ozburn AR, Falcon E, Mukherjee S, et al. The role of clock in ethanol-related behaviors. Neuropsychopharmacology. 2013;38:2393–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mukherjee S, Coque L, Cao JL, et al. Knockdown of Clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression-like behavior. Biol Psychiatry. 2010;68:503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Preitner N, Damiola F, Lopez-Molina L, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110:251–60.

    Article  CAS  PubMed  Google Scholar 

  52. Zghoul T, Abarca C, Sanchis-Segura C, et al. Ethanol self-administration and reinstatement of ethanol-seeking behavior in Per1 Brdm1 mutant mice. Psychopharmacology (Berl). 2007;190:13–9.

    Article  CAS  Google Scholar 

  53. Gamsby JJ, Templeton EL, Bonvini LA, et al. The circadian Per1 and Per2 genes influence alcohol intake, reinforcement, and blood alcohol levels. Behav Brain Res. 2013;249:15–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abarca C, Albrecht U, Spanagel R. Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Natl Acad Sci U S A. 2002;99:9026–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen CY, Logan RW, Ma T, et al. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc Natl Acad Sci U S A. 2016;113:206–11.

    Article  CAS  PubMed  Google Scholar 

  56. Li JZ, Bunney BG, Meng F, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci U S A. 2013;110:9950–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Spanagel R, Pendyala G, Abarca C, et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med. 2005;11:35–42.

    Article  CAS  PubMed  Google Scholar 

  58. Dong L, Bilbao A, Laucht M, et al. Effects of the circadian rhythm gene period 1 (per1) on psychosocial stress-induced alcohol drinking. Am J Psychiatry. 2011;168:1090–8.

    Article  PubMed  Google Scholar 

  59. Comasco E, Nordquist N, Gokturk C, et al. The clock gene PER2 and sleep problems: association with alcohol consumption among Swedish adolescents. Ups J Med Sci. 2010;115:41–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kovanen L, Saarikoski ST, Haukka J, et al. Circadian clock gene polymorphisms in alcohol use disorders and alcohol consumption. Alcohol Alcohol. 2010;45:303–11.

    Article  CAS  PubMed  Google Scholar 

  61. Sjoholm LK, Kovanen L, Saarikoski ST, et al. CLOCK is suggested to associate with comorbid alcohol use and depressive disorders. J Circadian Rhythms. 2010;8:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Shumay E, Fowler JS, Wang GJ, et al. Repeat variation in the human PER2 gene as a new genetic marker associated with cocaine addiction and brain dopamine D2 receptor availability. Transl Psychiatry. 2012;2:e86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. • Falcon E, Ozburn A, Mukherjee S, et al. Differential regulation of the period genes in striatal regions following cocaine exposure. PLoS One. 2013;8:e66438. This rodent study characterizes the changes in striatal circadian clock gene expression induced by acute or chronic cocaine administration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nikaido T, Akiyama M, Moriya T, Shibata S. Sensitized increase of period gene expression in the mouse caudate/putamen caused by repeated injection of methamphetamine. Mol Pharmacol. 2001;59:894–900.

    CAS  PubMed  Google Scholar 

  65. Iijima M, Nikaido T, Akiyama M, et al. Methamphetamine-induced, suprachiasmatic nucleus-independent circadian rhythms of activity and mPer gene expression in the striatum of the mouse. Eur J Neurosci. 2002;16:921–9.

    Article  PubMed  Google Scholar 

  66. Yuferov V, Kroslak T, Laforge KS, et al. Differential gene expression in the rat caudate putamen after “binge” cocaine administration: advantage of triplicate microarray analysis. Synapse. 2003;48:157–69.

    Article  CAS  PubMed  Google Scholar 

  67. Lynch WJ, Girgenti MJ, Breslin FJ, et al. Gene profiling the response to repeated cocaine self-administration in dorsal striatum: a focus on circadian genes. Brain Res. 2008;1213:166–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gillman AG, Kosobud AE, Timberlake W. Pre- and post-nicotine circadian activity rhythms can be differentiated by a paired environmental cue. Physiol Behav. 2008;93:337–50.

    Article  CAS  PubMed  Google Scholar 

  69. Gillman AG, Leffel 2nd JK, Kosobud AE, Timberlake W. Fentanyl, but not haloperidol, entrains persisting circadian activity episodes when administered at 24- and 31-h intervals. Behav Brain Res. 2009;205:102–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kosobud AE, Pecoraro NC, Rebec GV, Timberlake W. Circadian activity precedes daily methamphetamine injections in the rat. Neurosci Lett. 1998;250:99–102.

    Article  CAS  PubMed  Google Scholar 

  71. Natsubori A, Honma K, Honma S. Differential responses of circadian Per2 expression rhythms in discrete brain areas to daily injection of methamphetamine and restricted feeding in rats. Eur J Neurosci. 2013;37:251–8.

    Article  PubMed  Google Scholar 

  72. Gallardo CM, Darvas M, Oviatt M, et al. Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice. Elife. 2014;3:e03781.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Glass JD, Brager AJ, Stowie AC, Prosser RA. Cocaine modulates pathways for photic and nonphotic entrainment of the mammalian SCN circadian clock. Am J Physiol Regul Integr Comp Physiol. 2012;302:R740–50.

    Article  CAS  PubMed  Google Scholar 

  74. Brager AJ, Stowie AC, Prosser RA, Glass JD. The mPer2 clock gene modulates cocaine actions in the mouse circadian system. Behav Brain Res. 2013;243:255–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Prosser RA, Mangrum CA, Glass JD. Acute ethanol modulates glutamatergic and serotonergic phase shifts of the mouse circadian clock in vitro. Neuroscience. 2008;152:837–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ruby CL, Prosser RA, DePaul MA, et al. Acute ethanol impairs photic and nonphotic circadian phase resetting in the Syrian hamster. Am J Physiol Regul Integr Comp Physiol. 2009;296:R411–8.

    Article  CAS  PubMed  Google Scholar 

  77. Brager AJ, Ruby CL, Prosser RA, Glass JD. Acute ethanol disrupts photic and serotonergic circadian clock phase-resetting in the mouse. Alcohol Clin Exp Res. 2011;35:1467–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Prosser RA, Stowie A, Amicarelli M, et al. Cocaine modulates mammalian circadian clock timing by decreasing serotonin transport in the SCN. Neuroscience. 2014;275:184–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bossert JM, Marchant NJ, Calu DJ, Shaham Y. The reinstatement model of drug relapse: recent neurobiological findings, emerging research topics, and translational research. Psychopharmacology (Berl). 2013;229:453–76.

  80. LeGates TA, Fernandez DC, Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci. 2014;15:443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Silver R, LeSauter J, Tresco PA, Lehman MN. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature. 1996;382:810–3.

    Article  CAS  PubMed  Google Scholar 

  82. Gibson EM, Wang C, Tjho S, et al. Experimental ‘jet lag’ inhibits adult neurogenesis and produces long-term cognitive deficits in female hamsters. PLoS One. 2010;5:e15267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cho K. Chronic ‘jet lag’ produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci. 2001;4:567–8.

    Article  CAS  PubMed  Google Scholar 

  84. Cho K, Ennaceur A, Cole JC, Suh CK. Chronic jet lag produces cognitive deficits. J Neurosci. 2000;20:RC66.

    CAS  PubMed  Google Scholar 

  85. Evans JA, Davidson AJ. Health consequences of circadian disruption in humans and animal models. Prog Mol Biol Transl Sci. 2013;119:283–323.

    Article  PubMed  Google Scholar 

  86. Baron KG, Reid KJ. Circadian misalignment and health. Int Rev Psychiatry. 2014;26:139–54.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Doyle SE, Feng H, Garber G, et al. Effects of circadian disruption on methamphetamine consumption in methamphetamine-exposed rats. Psychopharmacology (Berl). 2015;232:2169–79.

    Article  CAS  Google Scholar 

  88. Mueller AD, Mear RJ, Mistlberger RE. Inhibition of hippocampal neurogenesis by sleep deprivation is independent of circadian disruption and melatonin suppression. Neuroscience. 2011;193:170–81.

  89. Tapia-Osorio A, Salgado-Delgado R, Angeles-Castellanos M, Escobar C. Disruption of circadian rhythms due to chronic constant light leads to depressive and anxiety-like behaviors in the rat. Behav Brain Res. 2013;252:1–9.

    Article  PubMed  Google Scholar 

  90. Garmabi B, Vousooghi N, Vosough M, et al. Effect of circadian rhythm disturbance on morphine preference and addiction in male rats: involvement of period genes and dopamine D1 receptor. Neuroscience. 2016;322:104–14.

    Article  CAS  PubMed  Google Scholar 

  91. Gauvin DV, Baird TJ, Vanecek SA, et al. Effects of time-of-day and photoperiod phase shifts on voluntary ethanol consumption in rats. Alcohol Clin Exp Res. 1997;21:817–25.

    Article  CAS  PubMed  Google Scholar 

  92. Clark JW, Fixaris MC, Belanger GV, Rosenwasser AM. Repeated light–dark phase shifts modulate voluntary ethanol intake in male and female high alcohol-drinking (HAD1) rats. Alcohol Clin Exp Res. 2007;31:1699–706.

    Article  CAS  PubMed  Google Scholar 

  93. Rosenwasser AM, Clark JW, Fixaris MC, et al. Effects of repeated light-dark phase shifts on voluntary ethanol and water intake in male and female Fischer and Lewis rats. Alcohol. 2010;44:229–37.

    Article  CAS  PubMed  Google Scholar 

  94. Harma MI, Ilmarinen J, Knauth P, et al. Physical training intervention in female shift workers: I. the effects of intervention on fitness, fatigue, sleep, and psychosomatic symptoms. Ergonomics. 1988;31:39–50.

    Article  CAS  PubMed  Google Scholar 

  95. Trinkoff AM, Storr CL. Work schedule characteristics and substance use in nurses. Am J Ind Med. 1998;34:266–71.

    Article  CAS  PubMed  Google Scholar 

  96. Rogers HL, Reilly SM. A survey of the health experiences of international business travelers. Part one—physiological aspects. AAOHN J. 2002;50:449–59.

    PubMed  Google Scholar 

  97. Li SX, Liu LJ, Jiang WG, et al. Circadian alteration in neurobiology during protracted opiate withdrawal in rats. J Neurochem. 2010;115:353–62.

    Article  CAS  PubMed  Google Scholar 

  98. Hood S, Cassidy P, Mathewson S, et al. Daily morphine injection and withdrawal disrupt 24-h wheel running and PERIOD2 expression patterns in the rat limbic forebrain. Neuroscience. 2011;186:65–75.

    Article  CAS  PubMed  Google Scholar 

  99. Li SX, Shi J, Epstein DH, et al. Circadian alteration in neurobiology during 30 days of abstinence in heroin users. Biol Psychiatry. 2009;65:905–12.

    Article  CAS  PubMed  Google Scholar 

  100. Duffy JF, Czeisler CA. Effect of light on human circadian physiology. Sleep Med Clin. 2009;4:165–77.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Burgess HJ, Revell VL, Eastman CI. A three pulse phase response curve to three milligrams of melatonin in humans. J Physiol. 2008;586:639–47.

    Article  CAS  PubMed  Google Scholar 

  102. Emens JS, Burgess HJ. Effect of light and melatonin and other melatonin receptor agonists on human circadian physiology. Sleep Med Clin. 2015;10:435–53.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Auger RR, Burgess HJ, Emens JS, et al. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleep-wake rhythm disorder (N24SWD), and irregular sleep-wake rhythm disorder (ISWRD). An update for 2015: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2015;11:1199–236.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Williams 3rd WP, McLin 3rd DE, Dressman MA, Neubauer DN. Comparative review of approved melatonin agonists for the treatment of circadian rhythm sleep-wake disorders. Pharmacotherapy. 2016;36:1028–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Terman M, Terman JS. Light therapy for seasonal and nonseasonal depression: efficacy, protocol, safety, and side effects. CNS Spectr. 2005;10:647–63. quiz 672.

    Article  PubMed  Google Scholar 

  106. Golden RN, Gaynes BN, Ekstrom RD, et al. The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am J Psychiatry. 2005;162:656–62.

    Article  PubMed  Google Scholar 

  107. Liu J, Clough SJ, Hutchinson AJ, et al. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol. 2016;56:361–83.

    Article  CAS  PubMed  Google Scholar 

  108. Sack RL, Lewy AJ, Hughes RJ. Use of melatonin for sleep and circadian rhythm disorders. Ann Med. 1998;30:115–21.

    Article  CAS  PubMed  Google Scholar 

  109. Solt LA, Wang Y, Banerjee S, et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature. 2012;485:62–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kojetin DJ, Burris TP. REV-ERB and ROR nuclear receptors as drug targets. Nat Rev Drug Discov. 2014;13:197–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen Z, Yoo SH, Takahashi JS. Small molecule modifiers of circadian clocks. Cell Mol Life Sci. 2013;70:2985–98.

    Article  CAS  PubMed  Google Scholar 

  112. Etchegaray JP, Machida KK, Noton E, et al. Casein kinase 1 delta regulates the pace of the mammalian circadian clock. Mol Cell Biol. 2009;29:3853–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. •• Wager TT, Chandrasekaran RY, Bradley J, et al. Casein kinase 1delta/epsilon inhibitor PF-5006739 attenuates opioid drug-seeking behavior. ACS Chem Neurosci. 2014;5:1253–65. This study demonstrates that pharmacological inhibition of CK1δ/ε attenuates the reinstatement of drug seeking in an animal model.

  114. Perreau-Lenz S, Vengeliene V, Noori HR, et al. Inhibition of the casein-kinase-1-epsilon/delta/prevents relapse-like alcohol drinking. Neuropsychopharmacology. 2012;37:2121–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian C. Webb.

Ethics declarations

Conflict of Interest

Ian C. Webb declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sleep Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webb, I.C. Circadian Rhythms and Substance Abuse: Chronobiological Considerations for the Treatment of Addiction. Curr Psychiatry Rep 19, 12 (2017). https://doi.org/10.1007/s11920-017-0764-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-017-0764-z

Keywords

Navigation