Skip to main content

Advertisement

Log in

Migraine and Reward System—Or Is It Aversive?

  • Imaging (A DaSilva, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Migraine is a debilitating neurological disorder with grave consequences for both the individual and society. This review will focus on recent literature investigating how brain structures implicated in reward and aversion contribute to the genesis of migraine pain. There exist many overlapping and interacting brain regions within pain and reward circuitry that contribute to negative affect and subjective experience of pain. The emotional component of pain has been argued to be a greater metric of quality of life than its sensory component, and thus understanding the processes that influence this pain characteristic is essential to developing novel treatment strategies for mitigating migraine pain. We emphasize and provide evidence that abnormalities within the mesolimbic cortical reward pathways contribute to migraine pain and that there are structural and functional neuroplasticity within the overlapping brain regions common to both pain and reward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. O’Connor AB. Neuropathic pain: quality-of-life impact, costs and cost effectiveness of therapy. Pharmacoeconomics. 2009;27:95–112.

    Article  PubMed  Google Scholar 

  2. Charles A. Advances in the basic and clinical science of migraine. Ann Neurol. 2009;65:491–8.

    Article  PubMed  Google Scholar 

  3. Stewart WF, Wood GC, Razzaghi H, et al. Work impact of migraine headaches. J Occup Environ Med. 2008;50:736–45.

    Article  PubMed  Google Scholar 

  4. Lipton RB, Stewart WF, Simon D. Medical consultation for migraine: results from the American Migraine Study. Headache. 1998;38:87–96.

    Article  PubMed  CAS  Google Scholar 

  5. Hazard E, Munakata J, Bigal ME, et al. The burden of migraine in the United States: current and emerging perspectives on disease management and economic analysis. Value Health. 2009;12:55–64.

    Article  PubMed  Google Scholar 

  6. MacGregor EA, Brandes J, Eikermann A. Migraine prevalence and treatment patterns: the global Migraine and Zolmitriptan Evaluation survey. Headache. 2003;43:19–26.

    Article  PubMed  Google Scholar 

  7. Lipton RB, Bigal ME, Ashina S, et al. Cutaneous allodynia in the migraine population. Ann Neurol. 2008;63:148–58.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Schwedt TJ, Krauss MJ, Frey K, Gereau 4th RW. Episodic and chronic migraineurs are hypersensitive to thermal stimuli between migraine attacks. Cephalalgia. 2011;31:6–12.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Oshinsky ML, Gomonchareonsiri S. Episodic dural stimulation in awake rats: a model for recurrent headache. Headache. 2007;47:1026–36.

    Article  PubMed  Google Scholar 

  10. Edelmayer RM, Vanderah TW, Majuta L, et al. Medullary pain facilitating neurons mediate allodynia in headache-related pain. Ann Neurol. 2009;65:184–93.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Pradhan AA, Smith ML, McGuire B, et al. Characterization of a novel model of chronic migraine. Pain. 2014;155:269–74. First animal model described for chronic migraine pain.

  12. Leknes S, Tracey I. A common neurobiology for pain and pleasure. Nat Rev Neurosci. 2008;9:314–20.

    Article  PubMed  CAS  Google Scholar 

  13. Marbach JJ, Lund P. Depression, anhedonia and anxiety in temporomandibular joint and other facial pain syndromes. Pain. 1981;11:73–84.

    Article  PubMed  CAS  Google Scholar 

  14. Nicholson B, Verma S. Comorbidities in chronic neuropathic pain. Pain Med. 2004;5 Suppl 1:S9–S27.

    Article  PubMed  Google Scholar 

  15. Asmundson GJ, Katz J. Understanding the co-occurrence of anxiety disorders and chronic pain: state-of-the-art. Depress Anxiety. 2009;26:888–901.

    Article  PubMed  Google Scholar 

  16. Elman I, Borsook D, Volkow ND. Pain and suicidality: insights from reward and addiction neuroscience. Prog Neurobiol. 2013;109:1–27.

    Article  PubMed  Google Scholar 

  17. Juurlink DN, Herrmann N, Szalai JP, et al. Medical illness and the risk of suicide in the elderly. Arch Intern Med. 2004;164:1179–84.

    Article  PubMed  Google Scholar 

  18. Ilgen MA, Kleinberg F, Ignacio RV, et al. Noncancer pain conditions and risk of suicide. JAMA Psychiatry. 2013;70:692–7.

    Article  PubMed  Google Scholar 

  19. Jarcho JM, Mayer EA, Jiang ZK, et al. Pain, affective symptoms, and cognitive deficits in patients with cerebral dopamine dysfunction. Pain. 2012;153:744–54.

    Article  PubMed  CAS  Google Scholar 

  20. Fields HL, Hjelmstad GO, Margolis EB, Nicola SM. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci. 2007;30:289–316.

    Article  PubMed  CAS  Google Scholar 

  21. McCutcheon JE, Ebner SR, Loriaux AL, Roitman MF. Encoding of aversion by dopamine and the nucleus accumbens. Front Neurosci. 2012;6:137.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Shippenberg TS, Bals-Kubik R, Herz A. Examination of the neurochemical substrates mediating the motivational effects of opioids: role of the mesolimbic dopamine system and D-1 vs. D-2 dopamine receptors. J Pharmacol Exp Ther. 1993;265:53–9.

    PubMed  CAS  Google Scholar 

  23. Knoll AT, Muschamp JW, Sillivan SE. Kappa opioid receptor signaling in the basolateral amygdala regulates conditioned fear and anxiety in rats. Biol Psychiatry. 2001;70:425–33.

    Article  CAS  Google Scholar 

  24. Bals-Kubik R, Ableitner A, Herz A, Shippenberg TS. Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J Pharmacol Exp Ther. 1993;264:489–95.

    PubMed  CAS  Google Scholar 

  25. Chefer VI, Bäckman CM, Gigante ED, Shippenberg TS. Kappa opioid receptors on dopaminergic neurons are necessary for kappa-mediated place aversion. Neuropsychopharmacology. 2013;38:2623–31.

    Article  PubMed  CAS  Google Scholar 

  26. Land BB, Bruchas MR, Schattauer S, et al. Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking. Proc Natl Acad Sci U S A. 2009;106:19168–73.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Stevenson CW, Sullivan RM, Gratton A. Effects of basolateral amygdala dopamine depletion on the nucleus accumbens and medial prefrontal cortical dopamine responses to stress. Neuroscience. 2003;116:285–93.

    Article  PubMed  CAS  Google Scholar 

  28. McCullough LD, Sokolowski JD, Salamone JD. A neurochemical and behavioral investigation of the involvement of nucleus accumbens dopamine in instrumental avoidance. Neuroscience. 1993;52:919–25.

    Article  PubMed  CAS  Google Scholar 

  29. Geha PY, Baliki MN, Chialvo DR, et al. Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain. 2007;128:88–100.

    Article  PubMed  CAS  Google Scholar 

  30. Zubieta JK, Stohler CS. Neurobiological mechanisms of placebo responses. Ann N Y Acad Sci. 2009;1156:198–210.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Lammel S, Lim BK, Ran C, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature. 2012;491:212–7. This paper dissected the reward and aversive circuitry originating in the ventral tegmental area.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Carr DB, Sesack SR. Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci. 2000;20:3864–73.

    PubMed  CAS  Google Scholar 

  33. Maleki N, Becerra L, Nutile L, et al. Migraine attacks the basal ganglia. Mol Pain. 2011;7:71.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Liu ZH, Shin R, Ikemoto S. Dual role of medial A10 dopamine neurons in affective encoding. Neuropsychopharmacology. 2008;33:3010–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Minami M. Neuronal mechanisms for pain-induced aversion behavioral studies using a conditioned place aversion test. Int Rev Neurobiol. 2009;85:135–44.

    Article  PubMed  CAS  Google Scholar 

  36. King T, Vera-Portocarrero L, Gutierrez T, et al. Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci. 2009;12:1364–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Navratilova E, Xie JY, King T, Porreca F. Evaluation of reward from pain relief. Ann N Y Acad Sci. 2013;1282:1–11.

    Article  PubMed  CAS  Google Scholar 

  38. De Felice M, Eyde N, Dodick D, et al. Capturing the aversive state of cephalic pain preclinically. Ann Neurol. 2013. doi:10.1002/ana.23922. First demonstration of pain aversion and contribution of the ACC in a model of migraine pain.

    Google Scholar 

  39. Barbanti P, Fofi L, Aurilia C, Egeo G. Dopaminergic symptoms in migraine. Neurol Sci. 2013;34 Suppl 1:S67–70.

    Article  PubMed  Google Scholar 

  40. Da Silva AN, Tepper SJ. Acute treatment of migraines. CNS Drugs. 2012;26:823–39.

    Article  PubMed  Google Scholar 

  41. Marmura MJ. Use of dopamine antagonists in treatment of migraine. Curr Treat Options Neurol. 2012;14:27–35.

    Article  PubMed  Google Scholar 

  42. Castillo J, Martínez F, Suárez C. Cerebrospinal fluid tyrosine and 3,4-dihydroxyphenylacetic acid levels in migraine patients. Cephalalgia. 1996;16:56–61.

    Article  PubMed  CAS  Google Scholar 

  43. Mitsikostas DD, Papadopoulou-Daifotis Z, Sfikakis A, Varonos D. The effect of sumatriptan on brain monoamines in rats. Headache. 1996;36:29–31.

    Article  PubMed  CAS  Google Scholar 

  44. Ghosh J, Pradhan S, Mittal B. Identification of a novel ANKK1 and other dopaminergic (DRD2 and DBH) gene variants in migraine susceptibility. Neuromol Med. 2013;15:61–73.

    Article  CAS  Google Scholar 

  45. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9:463–84.

    Article  PubMed  Google Scholar 

  46. Hofbauer RK, Rainville P, Duncan GH, Bushnell MC. Cortical representation of the sensory dimension of pain. J Neurophysiol. 2001;86:402–11.

    PubMed  CAS  Google Scholar 

  47. Rainville P, Duncan GH, Price DD, et al. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997;277:968–71.

    Article  PubMed  CAS  Google Scholar 

  48. Qu C, King T, Okun A, et al. Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous neuropathic pain following partial or complete axotomy. Pain. 2011;152:1641–8.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Johansen JP, Fields HL, Manning BH. The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci U S A. 2001;98:8077–82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Gao YJ, Ren WH, Zhang YQ, Zhao ZQ. Contributions of the anterior cingulate cortex and amygdala to pain- and fear-conditioned place avoidance in rats. Pain. 2004;110:343–53. One of the initial studies demonstrating the importance of the ACC in pain aversion in a rodent model of persistent pain.

    Article  PubMed  Google Scholar 

  51. Donahue RR, LaGraize SC, Fuchs PN. Electrolytic lesion of the anterior cingulate cortex decreases inflammatory, but not neuropathic nociceptive behavior in rats. Brain Res. 2001;897:131–8.

    Article  PubMed  CAS  Google Scholar 

  52. Ren LY, Lu ZM, Liu MG, et al. Distinct roles of the anterior cingulate cortex in spinal and supraspinal bee venom-induced pain behaviors. Neuroscience. 2008;153:268–78.

    Article  PubMed  CAS  Google Scholar 

  53. Koyama T, Kato K, Mikami A. During pain-avoidance neurons activated in the macaque anterior cingulate and caudate. Neurosci Lett. 2000;283:17–20.

    Article  PubMed  CAS  Google Scholar 

  54. LaGraize SC, Labuda CJ, Rutledge MA, et al. Differential effect of anterior cingulate cortex lesion on mechanical hypersensitivity and escape/avoidance behavior in an animal model of neuropathic pain. Exp Neurol. 2004;188:139–48.

    Article  PubMed  Google Scholar 

  55. Arnsten AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10:410–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12:652–69.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Pujara M, Koenigs M. Mechanisms of reward circuit dysfunction in psychiatric illness: prefrontal-striatal interactions. Neuroscientist. 2014;20:82–95.

    Google Scholar 

  58. Granziera C, DaSilva AF, Snyder J, et al. Anatomical alterations of the visual motion processing network in migraine with and without aura. PLoS Med. 2006;3:e402.

    Article  PubMed Central  PubMed  Google Scholar 

  59. DaSilva AF, Granziera C, Snyder J, Hadjikhani N. Thickening in the somatosensory cortex of patients with migraine. Neurology. 2007;69:1990–5.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Maleki N, Becerra L, Brawn J, et al. Concurrent functional and structural cortical alterations in migraine. Cephalalgia. 2012;32:607–20.

    Article  PubMed  Google Scholar 

  61. Kim JH, Kim S, Suh SI, et al. Interictal metabolic changes in episodic migraine: a voxel-based FDG-PET study. Cephalalgia. 2010;30:53–61.

    PubMed  CAS  Google Scholar 

  62. Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci. 2013;14:502–11.

    Article  PubMed  CAS  Google Scholar 

  63. Goldstein RZ, Craig AD, Bechara A, et al. The neurocircuitry of impaired insight in drug addiction. Trends Cogn Sci. 2009;13:372–80.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Ortega-Legaspi JM, Gortari P, Garduño-Gutiérrez R, et al. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain. Mol Pain. 2011;7:97.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Jensen KB, Kosek E, Petzke F, et al. Evidence of dysfunctional pain inhibition in Fibromyalgia reflected in rACC during provoked pain. Pain. 2009;144:95–100.

    Article  PubMed  Google Scholar 

  66. Burgmer M, Pogatzki-Zahn E, Gaubitz M, et al. Fibromyalgia unique temporal brain activation during experimental pain: a controlled fMRI study. J Neural Transm. 2010;117:123–31.

    Article  PubMed  Google Scholar 

  67. Berman SM, Naliboff BD, Suyenobu B, et al. Reduced brainstem inhibition during anticipated pelvic visceral pain correlates with enhanced brain response to the visceral stimulus in women with irritable bowel syndrome. J Neurosci. 2008;28:349–59.

    Article  PubMed  CAS  Google Scholar 

  68. Baliki MN, Chialvo DR, Geha PY, et al. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci. 2006;26:12165–73.

    Article  PubMed  CAS  Google Scholar 

  69. Jin C, Yuan K, Zhao L, et al. Structural and functional abnormalities in migraine patients without aura. NMR Biomed. 2013;26:58–64.

    Article  PubMed  Google Scholar 

  70. Kim JH, Suh SI, Seol HY, et al. Regional grey matter changes in patients with migraine: a voxel-based morphometry study. Cephalalgia. 2008;28:598–604.

    Article  PubMed  CAS  Google Scholar 

  71. Eck J, Richter M, Straube T, et al. Affective brain regions are activated during the processing of pain-related words in migraine patients. Pain. 2011;152:1104–13.

    Article  PubMed  Google Scholar 

  72. Xue T, Yuan K, Cheng P, et al. Alterations of regional spontaneous neuronal activity and corresponding brain circuit changes during resting state in migraine without aura. NMR Biomed. 2013;26:1051–8.

    Article  PubMed  Google Scholar 

  73. Salvadore G, Nugent AC, Lemaitre H, et al. Prefrontal cortical abnormalities in currently depressed versus currently remitted patients with major depressive disorder. Neuroimage. 2011;54:2643–51.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Sprengelmeyer R, Steele JD, Mwangi B, et al. The insular cortex and the neuroanatomy of major depression. J Affect Disord. 2011;133:120–7.

    Article  PubMed  Google Scholar 

  75. Parkinson JA, Willoughby PJ, Robbins TW, Everitt BJ. Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical-ventral striatopallidal systems. Behav Neurosci. 2000;114:42–63.

    Article  PubMed  CAS  Google Scholar 

  76. Wacker J, Dillon DG, Pizzagalli DA. The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques. Neuroimage. 2009;46:327–37.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Becerra L, Navratilova E, Porreca F, Borsook D. Analogous responses in the nucleus accumbens and cingulate cortex to pain onset (aversion) and offset (relief) in rats and humans. J Neurophysiol. 2013;110:1221–6.

    Article  PubMed  CAS  Google Scholar 

  78. Cauda F, Cavanna AE, D’agata F, et al. Functional connectivity and coactivation of the nucleus accumbens: a combined functional connectivity and structure-based meta-analysis. J Cogn Neurosci. 2011;23:2864–77.

    Article  PubMed  Google Scholar 

  79. Borsook D, Edwards R, Elman I, et al. Pain and analgesia: the value of salience circuits. Prog Neurobiol. 2013;104:93–105.

    Article  PubMed  Google Scholar 

  80. Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci. 2005;6:691–702.

    Article  PubMed  CAS  Google Scholar 

  81. Antonaci F, Nappi G, Galli F, et al. Migraine and psychiatric comorbidity: a review of clinical findings. J Headache Pain. 2011;12:115–25.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Buse D, Silberstein SD, Manack AN, Papapetropoulos S, Lipton RB. Psychiatric comorbidities of episodic and chronic migraine. J Neurol. 2013;260:1960–9.

    Article  PubMed  Google Scholar 

  83. Ratcliffe GE, Enns MW, Jacobi F, et al. The relationship between migraine and mental disorders in a population-based sample. Gen Hosp Psychiatry. 2009;31:14–9.

    Article  PubMed  Google Scholar 

  84. Jette N, Patten S, Williams J, et al. Comorbidity of migraine and psychiatric disorders–a national population-based study. Headache. 2008;48:501–16.

    Article  PubMed  Google Scholar 

  85. Theeler BJ, Kenney K, Prokhorenko OA, et al. Headache triggers in the US military. Headache. 2010;50:790–4.

    Article  PubMed  Google Scholar 

  86. Burstein R, Jakubowski M. Neural substrate of depression during migraine. Neurol Sci. 2009;30 Suppl 1:S27–31.

    Article  PubMed  Google Scholar 

  87. Borsook D, Maleki N, Becerra L, McEwen B. Understanding migraine through the lens of maladaptive stress responses: a model disease of allostatic load. Neuron. 2012;73:219–34.

    Article  PubMed  CAS  Google Scholar 

  88. Maleki N, Becerra L, Borsook D. Migraine: maladaptive brain responses to stress. Headache. 2012;52 Suppl 2:102–6.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Shurman J, Koob GF, Gutstein HB. Opioids, pain, the brain, and hyperkatifeia: a framework for the rational use of opioids for pain. Pain Med. 2010;11:1092–8.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Bie B, Brown DL, Naguib M. Synaptic plasticity and pain aversion. Eur J Pharmacol. 2011;667:26–31.

    Article  PubMed  CAS  Google Scholar 

  91. Tanimoto S, Nakagawa T, Yamauchi Y. Differential contributions of the basolateral and central nuclei of the amygdala in the negative affective component of chemical somatic and visceral pains in rats. Eur J Neurosci. 2003;18:2343–50.

    Article  PubMed  Google Scholar 

  92. Jennings JH, Sparta DR, Stamatakis AM, et al. Distinct extended amygdala circuits for divergent motivational states. Nature. 2013;496:224–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Murray EA. The amygdala, reward and emotion. Trends Cogn Sci. 2007;11:489–97.

    Article  PubMed  Google Scholar 

  94. Akcali D, Sayin A, Sara Y, Bolay H. Does single cortical spreading depression elicit pain behaviour in freely moving rats? Cephalalgia. 2010;30:1195–206.

    Article  PubMed  Google Scholar 

  95. Lauritzen M, Dreier JP, Fabricius M, et al. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab. 2011;31:17–35.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Charles AC, Baca SM. Cortical spreading depression and migraine. Nat Rev Neurol. 2013;9:637–44.

    Article  PubMed  Google Scholar 

  97. Hadjikhani N, Ward N, Boshyan J, et al. The missing link: enhanced functional connectivity between amygdala and visceroceptive cortex in migraine. Cephalalgia. 2013;33:1264–8.

    Article  PubMed  Google Scholar 

  98. Dehbandi S, Speckmann EJ, Pape HC, Gorji A. Cortical spreading depression modulates synaptic transmission of the rat lateral amygdala. Eur J Neurosci. 2008;27:2057–65.

    Article  PubMed  Google Scholar 

  99. Stankewitz A, May A. Increased limbic and brainstem activity during migraine attacks following olfactory stimulation. Neurology. 2011;77:476–82.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Chris Evans and Amynah Pradhan for their comments and critique of the paper.

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Catherine M. Cahill received a grant from NIH (R01, but not on the topic of this article). Dr. Cahill has travel reimbursement for lectures from McGill Pain Centre, AAG Western University of Health Sciences, and American Association for Geriatric Psychiatry.

Dr. Christopher Cook and Dr. Sarah Pickens each declare no potential conflicts of interest relevant to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. Cahill.

Additional information

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahill, C.M., Cook, C. & Pickens, S. Migraine and Reward System—Or Is It Aversive?. Curr Pain Headache Rep 18, 410 (2014). https://doi.org/10.1007/s11916-014-0410-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-014-0410-y

Keywords

Navigation