Skip to main content

Advertisement

Log in

Insights from experimental studies into allodynia and its treatment

  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Migraine is a common disorder that often is accompanied by cutaneous allodynia. Cutaneous allodynia on the head has been linked to sensitization of neurons in the trigeminal nucleus caudalis in animal models of migraine. In addition, migraine with allodynia is refractory to acute treatment with triptans. Understanding the mechanisms of allodynia, preventing its development, and finding effective treatments have become a priority in headache research. This paper reviews recent research on the pathogenesis of headache and the generation of allodynia. We discuss the regions of the nervous system that are involved in generating and maintaining headache pain and allodynia. We also discuss recent advances in the treatment of migraine based on translation research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Treede R, Kenshalo DR, Gracely RH, Jones AK: The cortical representation of pain. Pain 1999, 79: 105–111.

    Article  PubMed  CAS  Google Scholar 

  2. Merskey H: Classification of chronic pain. Descriptions of chronic pain syndromes and definitions of pain terms. Prepared by the International Association for the Study of Pain, Subcommittee on Taxonomy. Pain Suppl 1986, 3:S1–226.

    Google Scholar 

  3. Burstein R, Cutrer MF, Yarnitsky D: The development of cutaneous allodynia during a migraine attack: clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain 2000, 123:1703–1709.

    Article  PubMed  Google Scholar 

  4. Burstein R: Deconstructing migraine headache into peripheral and central sensitization. Pain 2001, 89:107–110.

    Article  PubMed  CAS  Google Scholar 

  5. Reuter U, Bolay H, Jansen-Olesen I, et al.: Delayed infiammation in rat meninges: implications for migraine pathophysiology. Brain 2001, 124:2490–2502.

    Article  PubMed  CAS  Google Scholar 

  6. Moskowitz MA, Macfarlane R: Neurovascular and molecular mechanisms in migraine headaches. Cerebrovasc Brain Metab Rev 1993, 5:159–177.

    PubMed  CAS  Google Scholar 

  7. Treede R, Meyer RA, Raja SN, Campbell JN: Peripheral and central mechanisms of cutaneous hyperalgesia. Prog Neurobiol 1992, 38:397–421.

    Article  PubMed  CAS  Google Scholar 

  8. Raja SN, Campbell JN, Meyer RA: Evidence for different mechanisms of primary and secondary hyperalgesia following heat injury to the glabrous skin. Brain 1984, 107:1179–1188.

    Article  PubMed  Google Scholar 

  9. Meyer RA, Campbell JN: Myelinated nociceptive afferents account for the hyperalgesia that follows a burn to the hand. Science 1981, 213:1527–1529.

    Article  PubMed  CAS  Google Scholar 

  10. Moalem G, Tracey DJ: Immune and infiammatory mechanisms in neuropathic pain. Brain Res Brain Res Rev 2005, [Epub ahead of print].

  11. Christoph T, Reissmuller E, Schiene K, et al.: Antiallodynic effects of NMDA glycine(B) antagonists in neuropathic pain: possible peripheral mechanisms. Brain Res 2005, 1048:218–227.

    Article  PubMed  CAS  Google Scholar 

  12. Coutaux A, Adam F, Le Bars D, Willer J: Hyperalgesia and allodynia: Peripheral mechanisms. Joint Bone Spine 2005, 72:359–371.

    Article  PubMed  Google Scholar 

  13. Vanegas H, Schaible HG: Descending control of persistent pain: inhibitory or facilitatory? Brain Res Brain Res Rev 2004, 46:295–309.

    Article  PubMed  Google Scholar 

  14. Witting N, Svensson P, Jensen TS: Differential recruitment of endogenous pain inhibitory systems in neuropathic pain patients. Pain 2003, 103:75–81.

    Article  PubMed  Google Scholar 

  15. Mason P: Deconstructing endogenous pain modulations. J. Neurophysiol 2005, 94:1659–1663.

    Article  PubMed  CAS  Google Scholar 

  16. Cervero F, Laird JM, Garcia-Nicas E: Secondary hyperalgesia and presynaptic inhibition: an update. Eur J Pain 2003, 7:345–351. Reviews the mechanisms of secondary hyperalgia.

    Article  PubMed  Google Scholar 

  17. Cervero F, Laird JM: Mechanisms of allodynia: interactions between sensitive mechanoreceptors and nociceptors. Neuroreport 1996, 7:526–528.

    Article  PubMed  CAS  Google Scholar 

  18. Woolf CJ, Thompson SW: The induction and maintenance of central sensitization is dependent on N-methyl-Daspartic acid receptor activation: implications for the treatment of post-injury pain hypersensitivity states. Pain 1991, 44:293–299.

    Article  PubMed  CAS  Google Scholar 

  19. Liveing E: On Megrim, Sick-Headache, and Some Allied Disorders. Nijmegen: Arts & Boeve; 1873.

    Google Scholar 

  20. Wolff HG: Headache and Other Pain. Oxford: Oxford University Press; 1963.

    Google Scholar 

  21. Selby G, Lance JW: Observations on 500 cases of migraine and allied vascular headache. J Neurol Neurosurg Psychiatry 1960, 23:23–32.

    Article  PubMed  CAS  Google Scholar 

  22. Tfelt Hansen P, Lous I, Olesen J: Prevalence and significance of muscle tenderness during common migraine attacks. Headache 1981, 21:49–54.

    Article  PubMed  CAS  Google Scholar 

  23. Drummond PD: Scalp tenderness and sensitivity to pain in migraine and tension headache. Headache 1987, 27:45–50.

    Article  PubMed  CAS  Google Scholar 

  24. Jensen K: Extracranial blood flow, pain and tenderness in migraine: clinical and experimental studies. Acta Neurol Scand Suppl 1993, 147:1–27.

    PubMed  CAS  Google Scholar 

  25. Strassman AM, Raymond SA, Burstein R: Sensitization of meningeal sensory neurons and the origin of headaches. Nature 1996, 384:560–564.

    Article  PubMed  CAS  Google Scholar 

  26. Burstein R, Yamamura H, Malick A, Strassman AM: Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 1998, 79:964–982.

    PubMed  CAS  Google Scholar 

  27. Burstein R, Falkowsky O, Borsook D, Strassman A: Distinct lateral and medial projections of the spinohypothalamic tract of the rat. J Comp Neurol 1996, 373:549–574.

    Article  PubMed  CAS  Google Scholar 

  28. Yamamura H, Malick A, Chamberlin NL, Burstein R: Cardiovascular and neuronal responses to head stimulation refiect central sensitization and cutaneous allodynia in a rat model of migraine. J Neurophysiol 1999, 81:479–493.

    PubMed  CAS  Google Scholar 

  29. Malick A, Strassman RM, Burstein R: Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol 2000, 84:2078–2112.

    PubMed  CAS  Google Scholar 

  30. Malick A, Burstein R: Peripheral and central sensitization during migraine. Funct Neurol 2000, 15(suppl 3):28–35.

    PubMed  Google Scholar 

  31. Burstein R, Yarnitsky D, Goor-Aryeh I, et al.: An association between migraine and cutaneous allodynia. Ann Neurol 2000, 47:614–624.

    Article  PubMed  CAS  Google Scholar 

  32. Burstein R, Jakubowski M: Migraine with and without allodynia: new sub-classification of migraine. In The Classification and Diagnosis of Headache Disorders. Edited by Olsen J. New York: Oxford University Press; 2005:3–11. Describes the contribution of allodynia to the choice of which treatment to use for acute migraine.

    Google Scholar 

  33. Luo J, Piovesan E, Oshinsky ML: Neurochemistry of sensitization in the trigeminal nucleus caudalis [Abstract]. Headache 2003, 43.

  34. Burstein R, Jakubowski M: Unitary hypothesis for multiple triggers of the pain and strain of migraine. J Comp Neurol 2005, 493:9–14.

    Article  PubMed  Google Scholar 

  35. Burstein R, Levy D, Jakubowski M:. Effects of sensitization of trigeminovascular neurons to triptan therapy during migraine. Rev Neurol (Paris) 2005, 161:658–660.

    CAS  Google Scholar 

  36. Oshinsky ML, Piovesan EJ, Pozo-Rosich P: Intravenous administration of the serotonin (5HT) 1B/D receptor agonist zolmitriptan blocks central sensitization in the trigeminal nucleus caudalis. Neurology 2004, 62:A533-A534.

    Google Scholar 

  37. Jakubowski M, Levy D, Goor-Aryeh I, et al.: Terminating migraine with allodynia and ongoing central sensitization using parenteral administration of COX1/COX2 inhibitors. Headache 2005, 45:850–861.

    Article  PubMed  Google Scholar 

  38. Burstein R, Jakubowski M: Implications of multimechanism therapy: when to treat? Neurology 2005, 10(suppl 2):S16-S20.

    Google Scholar 

  39. Olesen J, Diener HC, Schoenen J, Hettiarachchi J: No effect of eletriptan administration during the aura phase of migraine. Eur J Neurol 2004, 11:671–677.

    Article  PubMed  CAS  Google Scholar 

  40. Dowson A: Can oral 311C90, a novel 5-HT1D agonist, prevent migraine headache when taken during an aura? Eur Neurol 1996, 36(suppl 2):28–31.

    PubMed  CAS  Google Scholar 

  41. Bates D, Ashford E, Dawson R, et al.: Subcutaneous sumatriptan during the migraine aura. Sumatriptan Aura Study Group. Neurology 1994, 9:1587–1592.

    Google Scholar 

  42. Brandes JL, Kudrow D, Cady R, et al.: Eletriptan in the early treatment of acute migraine: infiuence of pain intensity and time of dosing. Cephalalgia 2005, 44:735–742. Proposes that triptan treatment, at anytime of the migraine attack, while the pain intensity is mild is the optimum predictor for successful treatment outcome, not only early in the attack.

    Article  Google Scholar 

  43. Ji RR, Kohno T, Moore KA, Woolf CJ: Central sensitization and LTP: Do pain and memory share similar mechanisms? Trends Neurosci 2003, 26:696–705.

    Article  PubMed  CAS  Google Scholar 

  44. Cervero F, Laird JM: Visceral pain. Lancet 1999, 353:2145–2148.

    Article  PubMed  CAS  Google Scholar 

  45. Potrebic S, Ahn AH, Skinner K, et al.: Peptidergic nociceptors of both trigeminal and dorsal root ganglia express serotonin 1D receptors: implications for the selective antimigraine action of triptans. J Neurosci 2003, 23:10988–10997.

    PubMed  CAS  Google Scholar 

  46. Bartsch T, Knight YE, Goadsby PJ: Activation of 5-HT(1B/1D) receptor in the periaqueductal gray inhibits nociception. Ann Neurol 2004, 56:371–381.

    Article  PubMed  CAS  Google Scholar 

  47. Raskin NH: Repetitive intravenous dihydroergotamine as therapy for intractable migraine. Neurology 1986, 36:995–997.

    PubMed  CAS  Google Scholar 

  48. Pozo-Rosich P, Oshinsky ML: Effects of dihydroergotamine (DHE) on central sensitization of neurons in the trigeminal nucleus caudalis [Abstract S19.003]. Program and abstracts of the American Academy of Neurology 57th Annual Meeting. Miami Beach, FL: April 9–16, 2005.

  49. Silberstein SD, Young WB, Hopkins MM, et al.: DHE-45 for migraine with cutaneous allodynia: a pilot study. Program and abstracts of the American Academy of Neurology 57th Annual Meeting. Miami Beach, FL: April 9–16, 2005.

  50. Jakubowski M, Levy D, Goor-Aryeh I, et al.: Terminating migraine with allodynia and ongoing central sensitization using parenteral administration of COX1/COX2 inhibitors. Headache 2005, 45:850–861. Basic science and clinical study of the effects on COX-1/COX-2 inhibitors in the treatment of allodynia in migraine.

    Article  PubMed  Google Scholar 

  51. Durrenberger PF, Facer P, Casula MA, et al.: Prostanoid receptor EP1 and COX-2 in injured human nerves and a rat model of nerve injury: a time-course study. BMC Neurol 2006, 6:1.

    Article  PubMed  CAS  Google Scholar 

  52. Bingham S, Beswick PJ, Bountra C, et al.: The cyclooxygenase-2 inhibitor GW406381X [2-(4-ethoxyphenyl)-3-[4-(methylsulfonyl)phenyl]-pyrazolo[1,5-b]pyridazine ] is effective in animal models of neuropathic pain and central sensitization. J Pharmacol Exp Ther 2005, 312:1161–1169.

    Article  PubMed  CAS  Google Scholar 

  53. Fox A, Medhurst S, Courade JP, et al.: Anti-hyperalgesic activity of the COX-2 inhibitor lumiracoxib in a model of bone cancer pain in the rat. Pain 2004, 107:33–40.

    Article  PubMed  CAS  Google Scholar 

  54. Lui PW, Lee CH: Pre-emptive effects of intrathecal cyclooxygenase inhibitor or nitric oxide synthase inhibitor on thermal hypersensitivity following peripheral nerve injury. Life Sci 2004, 75:2527–2538.

    Article  PubMed  CAS  Google Scholar 

  55. Lee YW, Park KA, Lee WT: Effects of MK-801 and morphine on spinal C-Fos expression during the development of neuropathic pain. Yonsei Med J 2002, 43:370–376.

    PubMed  CAS  Google Scholar 

  56. Medvedev IO, Malyshkin AA, Belozertseva IV, et al.: Effects of low-affinity NMDA receptor channel blockers in two rat models of chronic pain. Neuropharmacology 2004, 47:175–183.

    Article  PubMed  CAS  Google Scholar 

  57. You HJ, Chen J, Morch CD, Arendt-Nielsen L: Differential effect of peripheral glutamate (NMDA, non-NMDA) receptor antagonists on bee venom-induced spontaneous nociception and sensitization. Brain Res Bull 2002, 58:561–567.

    Article  PubMed  CAS  Google Scholar 

  58. Berry JD, Petersen KL: A single dose of gabapentin reduces acute pain and allodynia in patients with herpes zoster. Neurology 2005, 65:444–447.

    Article  PubMed  CAS  Google Scholar 

  59. Blackburn-Munro G, Erichsen HK: Antiepileptics and the treatment of neuropathic pain: evidence from animal models. Curr Pharm Des 2005, 11:2961–2976.

    Article  PubMed  CAS  Google Scholar 

  60. Jang Y, Kim ES, Park SS, et al.: The suppressive effects of oxcarbazepine on mechanical and cold allodynia in a rat model of neuropathic pain. Anesth Analg 2005, 101:800–806.

    Article  PubMed  CAS  Google Scholar 

  61. Idanpaan-Heikkila JJ, Guilbaud G: Pharmacological studies on a rat model of trigeminal neuropathic pain: baclofen, but not carbamazepine, morphine or tricyclic antidepressants, attenuates the allodynia-like behaviour. Pain 1999, 79:281–290.

    Article  PubMed  CAS  Google Scholar 

  62. Lampl C, Yazdi K, Roper C: Amitriptyline in the prophylaxis of central post-stroke pain: preliminary results of 39 patients in a placebo-controlled, long-term study. Stroke 2002, 33:3030–3032.

    Article  PubMed  CAS  Google Scholar 

  63. Bomholt SF, Mikkelsen JD, Blackburn-Munro G: Antinociceptive effects of the antidepressants amitriptyline, duloxetine, mirtazapine and citalopram in animal models of acute, persistent, and neuropathic pain. Neuropharmacology 2005, 48:252–263.

    Article  PubMed  CAS  Google Scholar 

  64. Hartrick CT: Increased production of nitric oxide stimulated by interferon-gamma from peripheral blood monocytes in patients with complex regional pain syndrome. Neurosci Lett 2002, 323:75–77.

    Article  PubMed  CAS  Google Scholar 

  65. Dogrul A, Gul H, Yildiz O, et al.: Cannabinoids blocks tactile allodynia in diabetic mice without attenuation of its antinociceptive effect. Neurosci Lett 2004, 368:82–86.

    Article  PubMed  CAS  Google Scholar 

  66. Rukwied R, Watkinson A, McGlone F, Dvorak M: Cannabinoid agonists attenuate capsaicin-induced responses in human skin. Pain 2003, 102:283–288.

    Article  PubMed  CAS  Google Scholar 

  67. Bridges D, Ahmad K, Rice AS: The synthetic cannabinoid WIN55,212-2 attenuates hyperalgesia and allodynia in a rat model of neuropathic pain. Br J Pharmacol 2001, 133:586–594.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Oshinsky PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oshinsky, M.L. Insights from experimental studies into allodynia and its treatment. Current Science Inc 10, 225–230 (2006). https://doi.org/10.1007/s11916-006-0050-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-006-0050-y

Keywords

Navigation