Skip to main content
Log in

Glucose-Lowering Drugs and Fracture Risk—a Systematic Review

  • Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Diabetes mellitus (DM) is associated with increased fracture risk. The aim of this systematic review was to examine the effects of different classes of glucose-lowering drugs on fracture risk in patients with type 2 DM. The heterogeneity of the included studies did not allow formal statistical analyses.

Recent Findings

Sixty studies were included in the review. Metformin, dipeptidylpeptidase-IV inhibitors, glucagon-like peptide-1 receptor agonists, and sodium–glucose cotransporter 2-inhibitors do not appear to increase fracture risk. Results for insulin and sulphonylureas were more disparate, although there may be an increased fracture risk related to hypoglycemia and falls with these treatments. Glitazones were consistently associated with increased fracture risk in women, although the evidence was sparser in men.

Summary

New glucose-lowering drugs are continuously being developed and better understanding of these is leading to changes in prescription patterns. Our findings warrant continued research on the effects of glucose-lowering drugs on fracture risk, elucidating the class-specific effects of these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis. Osteoporos Int. 2007;18(4):427–44 This meta-analysis revealed both an increased fracture risk in patients with diabetes, but also that bone mineral density does not explain the fracture risk.

    Article  CAS  PubMed  Google Scholar 

  2. Farr JN, Drake MT, Amin S, Melton IL, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res. 2014;29(4):787–95.

    Article  PubMed  Google Scholar 

  3. Saito M, Kida Y, Kato S, Marumo K. Diabetes, collagen, and bone quality. Curr Osteoporosis Rep. 2014;12(2):181–8.

    Article  Google Scholar 

  4. Hygum K, Starup-Linde J, Harslof T, Vestergaard P, Langdahl BL. MECHANISMS IN ENDOCRINOLOGY: diabetes mellitus, a state of low bone turnover - a systematic review and meta-analysis. Eur J Endocrinol. 2017;176(3):R137–57.

    Article  CAS  PubMed  Google Scholar 

  5. Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int. 2009;84(1):45–55.

    Article  CAS  PubMed  Google Scholar 

  6. Majumdar SR, Leslie WD, Lix LM, Morin SN, Johansson H, Oden A, et al. Longer duration of diabetes strongly impacts fracture risk assessment: the Manitoba BMD cohort. J Clin Endocrinol Metab. 2016;101(11):4489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hygum K, Starup-Linde J, Langdahl BL. Diabetes and bone. Osteoporos Sarcopenia. 2019;5(2):29–37. https://doi.org/10.1016/j.afos.2019.05.001.

  8. Yokomoto-Umakoshi M, Kanazawa I, Kondo S, Sugimoto T. Association between the risk of falls and osteoporotic fractures in patients with type 2 diabetes mellitus. Endocr J. 2017;64(7):727–34.

    Article  PubMed  Google Scholar 

  9. Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia. 2005;48(7):1292–9.

    Article  CAS  PubMed  Google Scholar 

  10. Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, et al. 2019 update to: management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2020;63(2):221–8.

    Article  PubMed  Google Scholar 

  11. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Available at: https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/. Accessed 03/30, 2020.

  13. Chen HH, Horng MH, Yeh SY, Lin IC, Yeh CJ, Muo CH, et al. Glycemic control with thiazolidinedione is associated with fracture of T2DM patients. PLoS One. 2015;10(8):e0135530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Choi HJ, Park C, Lee YK, Ha YC, Jang S, Shin CS. Risk of fractures and diabetes medications: a nationwide cohort study. Osteoporos Int. 2016;27(9):2709–15. https://doi.org/10.1007/s00198-016-3595-6.

  15. Hung YC, Lin CC, Chen HJ, Chang MP, Huang KC, Chen YH, et al. Severe hypoglycemia and hip fracture in patients with type 2 diabetes: a nationwide population-based cohort study. Osteoporos Int. 2017;28(7):2053–60.

    Article  CAS  PubMed  Google Scholar 

  16. Kanazawa I, Yamaguchi T, Yamamoto M, Sugimoto T. Relationship between treatments with insulin and oral hypoglycemic agents versus the presence of vertebral fractures in type 2 diabetes mellitus. J Bone Miner Metab. 2010;28(5):554–60.

    Article  CAS  PubMed  Google Scholar 

  17. Lee RH, Sloane R, Pieper C, Lyles KW, Adler RA, Van Houtven C, et al. Glycemic control and insulin treatment alter fracture risk in older men with type 2 diabetes mellitus. J Bone Miner Res. 2019;34(11):2045–51.

    Article  CAS  PubMed  Google Scholar 

  18. Losada E, Soldevila B, Ali MS, Martínez-Laguna D, Nogués X, Puig-Domingo M, Díez-Pérez A, Mauricio D, Prieto-Alhambra D. Real-world antidiabetic drug use and fracture risk in 12,277 patients with type 2 diabetes mellitus: a nested case-control study. Osteoporos Int. 2018;29(9):2079–86. https://doi.org/10.1007/s00198-018-4581-y.

  19. Melton LJ 3rd, Leibson CL, Achenbach SJ, Therneau TM, Khosla S. Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res. 2008;23(8):1334–42.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Monami M, Cresci B, Colombini A, Pala L, Balzi D, Gori F, et al. Bone fractures and hypoglycemic treatment in type 2 diabetic patients: a case-control study. Diabetes Care. 2008;31(2):199–203.

    Article  PubMed  Google Scholar 

  21. Nicodemus KK, Folsom AR, Iowa Women's Health Study. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care. 2001;24(7):1192–7.

    Article  CAS  PubMed  Google Scholar 

  22. Schneider AL, Williams EK, Brancati FL, Blecker S, Coresh J, Selvin E. Diabetes and risk of fracture-related hospitalization: the Atherosclerosis Risk in Communities Study. Diabetes Care. 2013;36(5):1153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Starup-Linde J, Gregersen S, Frost M, Vestergaard P. Use of glucose-lowering drugs and risk of fracture in patients with type 2 diabetes. Bone. 2017;95:136–42.

    Article  CAS  PubMed  Google Scholar 

  24. Starup-Linde J, Gregersen S, Vestergaard P. Associations with fracture in patients with diabetes: a nested case-control study. BMJ Open. 2016;6(2):e009686 -2015-009686.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wallander M, Axelsson KF, Nilsson AG, Lundh D, Lorentzon M. Type 2 diabetes and risk of hip fractures and non-skeletal fall injuries in the elderly: a Study from the fractures and fall injuries in the elderly cohort (FRAILCO). J Bone Miner Res. 2017;32(3):449–60.

    Article  CAS  PubMed  Google Scholar 

  26. • Lapane KL, Jesdale BM, Dube CE, Pimentel CB, Rajpathak SN. Sulfonylureas and risk of falls and fractures among nursing home residents with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2015;109(2):411–9 Nursing home residents were at an increased risk of falls when initiating sulphonylureas.

    Article  CAS  PubMed  Google Scholar 

  27. Rajpathak SN, Fu C, Brodovicz KG, Engel SS, Lapane K. Sulfonylurea use and risk of hip fractures among elderly men and women with type 2 diabetes. Drugs Aging. 2015;32(4):321–7.

    Article  CAS  PubMed  Google Scholar 

  28. Ahmed LA, Joakimsen RM, Berntsen GK, Fonnebo V, Schirmer H. Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int. 2006;17(4):495–500.

    Article  PubMed  Google Scholar 

  29. •• Corrao G, Monzio Compagnoni M, Ronco R, Merlino L, Ciardullo S, Perseghin G, Banfi G. Is Switching from Oral Antidiabetic Therapy to Insulin Associated with an Increased Fracture Risk? Clin Orthop Relat Res. 2020;478(5):992–1003. https://doi.org/10.1097/CORR.0000000000001089. Switch to insulin was associated with an increased fracture risk.

  30. • Losada-Grande E, Hawley S, Soldevila B, Martinez-Laguna D, Nogues X, Diez-Perez A, et al. Insulin use and excess fracture risk in patients with type 2 diabetes: a propensity-matched cohort analysis. Sci Rep. 2017;7(1):3781 –017-03748-z. In a propensity-matched analysis, insulin use was associated with an increased fracture risk.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ottenbacher KJ, Ostir GV, Peek MK, Goodwin JS, Markides KS. Diabetes mellitus as a risk factor for hip fracture in Mexican American older adults. J Gerontol A Biol Sci Med Sci. 2002;57(10):M648–53.

    Article  PubMed  Google Scholar 

  32. Pscherer S, Kostev K, Dippel FW, Rathmann W. Fracture risk in patients with type 2 diabetes under different antidiabetic treatment regimens: a retrospective database analysis in primary care. Diabetes Metab Syndr Obes. 2016;9:17–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab. 2001;86(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  34. Adimadhyam S, Lee TA, Calip GS, Smith Marsh DE, Layden BT, Schumock GT. Sodium-glucose co-transporter 2 inhibitors and the risk of fractures: a propensity score-matched cohort study. Pharmacoepidemiol Drug Saf. 2019;28(12):1629–39.

    Article  CAS  PubMed  Google Scholar 

  35. Fralick M, Kim SC, Schneeweiss S, Kim D, Redelmeier DA, Patorno E. Fracture risk after initiation of use of canagliflozin: a cohort study. Ann Intern Med. 2019;170(3):155–63.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jabbour S, Seufert J, Scheen A, Bailey CJ, Karup C, Langkilde AM. Dapagliflozin in patients with type 2 diabetes mellitus: a pooled analysis of safety data from phase IIb/III clinical trials. Diabetes Obes Metab. 2018;20(3):620–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kohler S, Kaspers S, Salsali A, Zeller C, Woerle HJ. Analysis of fractures in patients with type 2 diabetes treated with empagliflozin in pooled data from placebo-controlled trials and a head-to-head study versus glimepiride. Diabetes Care. 2018;41(8):1809–16. https://doi.org/10.2337/dc17-1525.

  38. Schmedt N, Andersohn F, Walker J, Garbe E. Sodium-glucose co-transporter-2 inhibitors and the risk of fractures of the upper or lower limbs in patients with type 2 diabetes: a nested case-control study. Diabetes Obes Metab. 2019;21(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  39. •• Tang HL, Li DD, Zhang JJ, Hsu YH, Wang TS, Zhai SD, et al. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2016;18(12):1199–206 In this meta-analysis of randomized controlled trials SGLT-2is were not associated with an increased risk of fracture.

    Article  CAS  PubMed  Google Scholar 

  40. Ueda P, Svanstrom H, Melbye M, Eliasson B, Svensson AM, Franzen S, et al. Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: nationwide register based cohort study. BMJ. 2018;363:k4365.

    Article  PubMed  PubMed Central  Google Scholar 

  41. •• Watts NB, Bilezikian JP, Usiskin K, Edwards R, Desai M, Law G, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2016;101(1):157–66 In this meta-analysis of randomized controlled trials canagliflozin was associated with an increased risk of fracture.

    Article  CAS  PubMed  Google Scholar 

  42. Cheng L, Hu Y, Li YY, Cao X, Bai N, Lu TT, et al. Glucagon-like peptide-1 receptor agonists and risk of bone fracture in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes Metab Res Rev. 2019;35(7):e3168.

    Article  PubMed  Google Scholar 

  43. Driessen JH, Henry RM, van Onzenoort HA, Lalmohamed A, Burden AM, Prieto-Alhambra D, et al. Bone fracture risk is not associated with the use of glucagon-like peptide-1 receptor agonists: a population-based cohort analysis. Calcif Tissue Int. 2015;97(2):104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Driessen JH, van Onzenoort HA, Starup-Linde J, Henry R, Burden AM, Neef C, van den Bergh JP, Vestergaard P, de Vries F. Use of glucagon-like-peptide 1 receptor agonists and risk of fracture as compared to use of other anti-hyperglycemic drugs. Calcif Tissue Int. 2015;97(5):506–15. https://doi.org/10.1007/s00223-015-0037-y.

  45. Mabilleau G, Mieczkowska A, Chappard D. Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials. J Diabetes. 2014;6(3):260–6.

    Article  CAS  PubMed  Google Scholar 

  46. Su B, Sheng H, Zhang M, Bu L, Yang P, Li L, et al. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists' treatment: a meta-analysis of randomized controlled trials. Endocrine. 2015;48(1):107–15.

    Article  CAS  PubMed  Google Scholar 

  47. Chen Q, Liu T, Zhou H, Peng H, Yan C. Risk of fractures associated with dipeptidyl peptidase-4 inhibitor treatment: a systematic review and meta-analysis of randomized controlled trials. Diabetes Ther. 2019;10(5):1879–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dombrowski S, Kostev K, Jacob L. Use of dipeptidyl peptidase-4 inhibitors and risk of bone fracture in patients with type 2 diabetes in Germany-a retrospective analysis of real-world data. Osteoporos Int. 2017;28(8):2421–8.

    Article  CAS  PubMed  Google Scholar 

  49. Driessen JH, van Onzenoort HA, Henry RM, Lalmohamed A, van den Bergh JP, Neef C, et al. Use of dipeptidyl peptidase-4 inhibitors for type 2 diabetes mellitus and risk of fracture. Bone. 2014;68:124–30.

    Article  CAS  PubMed  Google Scholar 

  50. Driessen JH, van Onzenoort HA, Starup-Linde J, Henry R, Neef C, van den Bergh J, et al. Use of dipeptidyl peptidase 4 inhibitors and fracture risk compared to use of other anti-hyperglycemic drugs. Pharmacoepidemiol Drug Saf. 2015;24(10):1017–25.

    Article  CAS  PubMed  Google Scholar 

  51. Driessen JH, van den Bergh JP, van Onzenoort HA, Henry RM, Leufkens HG, de Vries F. Long-term use of dipeptidyl peptidase-4 inhibitors and risk of fracture: a retrospective population-based cohort study. Diabetes Obes Metab. 2017;19(3):421–8.

    Article  CAS  PubMed  Google Scholar 

  52. Gamble JM, Donnan JR, Chibrikov E, Twells LK, Midodzi WK, Majumdar SR. The risk of fragility fractures in new users of dipeptidyl peptidase-4 inhibitors compared to sulfonylureas and other anti-diabetic drugs: a cohort study. Diabetes Res Clin Pract. 2018;136:159–67.

    Article  CAS  PubMed  Google Scholar 

  53. Hou WH, Chang KC, Li CY, Ou HT. Dipeptidyl peptidase-4 inhibitor use is associated with decreased risk of fracture in patients with type 2 diabetes: a population-based cohort study. Br J Clin Pharmacol. 2018;84(9):2029–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. •• Josse RG, Majumdar SR, Zheng Y, Adler A, Bethel MA, Buse JB, et al. Sitagliptin and risk of fractures in type 2 diabetes: results from the TECOS trial. Diabetes Obes Metab. 2017;19(1):78–86 This randomized controlled trial report no difference in fracture rates between sitagliptin and placebo users.

    Article  CAS  PubMed  Google Scholar 

  55. Majumdar SR, Josse RG, Lin M, Eurich DT. Does sitagliptin affect the rate of osteoporotic fractures in type 2 diabetes? Population-based cohort study. J Clin Endocrinol Metab. 2016;101(5):1963–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mosenzon O, Wei C, Davidson J, Scirica BM, Yanuv I, Rozenberg A, et al. Incidence of fractures in patients with type 2 diabetes in the SAVOR-TIMI 53 trial. Diabetes Care. 2015;38(11):2142–50.

    Article  PubMed  Google Scholar 

  57. Ustulin M, Park SY, Choi H, Chon S, Woo JT, Rhee SY. Effect of dipeptidyl peptidase-4 inhibitors on the risk of bone fractures in a Korean population. J Korean Med Sci. 2019;34(35):e224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bazelier MT, Vestergaard P, Gallagher AM, van Staa TP, Cooper C, Leufkens HG, et al. Risk of fracture with thiazolidinediones: disease or drugs? Calcif Tissue Int. 2012;90(6):450–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bazelier MT, Gallagher AM, van Staa TP, Cooper C, Leufkens HG, Vestergaard P, et al. Use of thiazolidinediones and risk of osteoporotic fracture: disease or drugs? Pharmacoepidemiol Drug Saf. 2012;21(5):507–14.

    Article  CAS  PubMed  Google Scholar 

  60. • Bazelier MT, de Vries F, Vestergaard P, Herings RM, Gallagher AM, Leufkens HG, van Staa TP. Risk of fracture with thiazolidinediones: an individual patient data meta-analysis. Front Endocrinol (Lausanne). 2013;4:11. https://doi.org/10.3389/fendo.2013.00011. This large analysis of three population report increased fracture risk with current glitazone use in women.

  61. Bilezikian JP, Josse RG, Eastell R, Lewiecki EM, Miller CG, Wooddell M, et al. Rosiglitazone decreases bone mineral density and increases bone turnover in postmenopausal women with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2013;98(4):1519–28.

    Article  CAS  PubMed  Google Scholar 

  62. Habib ZA, Havstad SL, Wells K, Divine G, Pladevall M, Williams LK. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95(2):592–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–35.

    Article  CAS  PubMed  Google Scholar 

  64. Hsiao FY, Mullins CD. The association between thiazolidinediones and hospitalisation for fracture in type 2 diabetic patients: a Taiwanese population-based nested case-control study. Diabetologia. 2010;53(3):489–96.

    Article  CAS  PubMed  Google Scholar 

  65. Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, et al. Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care. 2008;31(5):845–51.

    Article  CAS  PubMed  Google Scholar 

  66. Lin HF, Liao KF, Chang CM, Lin CL, Lin CH, Lai SW. Use of thiazolidinediones and risk of hip fracture in old people in a case-control study in Taiwan. Medicine (Baltimore). 2017;96(36):e7712.

    Article  CAS  Google Scholar 

  67. •• Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ. 2009;180(1):32–9 This meta-analysis reports increased fracture risk among glitazone users.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mancini T, Mazziotti G, Doga M, Carpinteri R, Simetovic N, Vescovi PP, et al. Vertebral fractures in males with type 2 diabetes treated with rosiglitazone. Bone. 2009;45(4):784–8.

    Article  CAS  PubMed  Google Scholar 

  69. •• Schwartz AV, Chen H, Ambrosius WT, Sood A, Josse RG, Bonds DE, et al. Effects of TZD use and discontinuation on fracture rates in ACCORD bone tudy. J Clin Endocrinol Metab. 2015;100(11):4059–66 Discontinuation of glitazone use in women attenuated the increased fracture risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Solomon DH, Cadarette SM, Choudhry NK, Canning C, Levin R, Sturmer T. A cohort study of thiazolidinediones and fractures in older adults with diabetes. J Clin Endocrinol Metab. 2009;94(8):2792–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tzoulaki I, Molokhia M, Curcin V, Little MP, Millett CJ, Ng A, et al. Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: retrospective cohort study using UK general practice research database. BMJ. 2009;339:b4731.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kostev K, Dombrowski S. Fracture risk reduction with use of dipeptidyl peptidase-4 inhibitors: response to Driessen et al. Osteoporos Int. 2017;28(8):2431.

    Article  CAS  PubMed  Google Scholar 

  73. Patorno E, Patrick AR, Garry EM, Schneeweiss S, Gillet VG, Bartels DB, et al. Observational studies of the association between glucose-lowering medications and cardiovascular outcomes: addressing methodological limitations. Diabetologia. 2014;57(11):2237–50.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang Z, Cao Y, Tao Y, Meng E, Tang J, Liu Y, et al. Sulfonylurea and fracture risk in patients with type 2 diabetes mellitus: a meta-analysis. Diabetes Res Clin Pract. 2020;159:107990.

    Article  CAS  PubMed  Google Scholar 

  75. Kennedy RL, Henry J, Chapman AJ, Nayar R, Grant P, Morris AD. Accidents in patients with insulin-treated diabetes: increased risk of low-impact falls but not motor vehicle crashes--a prospective register-based study. J Trauma. 2002;52(4):660–6.

    PubMed  Google Scholar 

  76. Molinuevo MS, Schurman L, McCarthy AD, Cortizo AM, Tolosa MJ, Gangoiti MV, et al. Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res. 2010;25(2):211–21.

    Article  CAS  PubMed  Google Scholar 

  77. Zinman B, Haffner SM, Herman WH, Holman RR, Lachin JM, Kravitz BG, et al. Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab. 2010;95(1):134–42.

    Article  CAS  PubMed  Google Scholar 

  78. Beck-Nielsen H, Stage TB, Christensen MH, Jorgensen NR, Brosen K, Gram J, et al. Effects of metformin, rosiglitazone and insulin on bone metabolism in patients with type 2 diabetes. Bone. 2018;112:35–41.

    Article  PubMed  CAS  Google Scholar 

  79. Fronczek-Sokol J, Pytlik M. Effect of glimepiride on the skeletal system of ovariectomized and non-ovariectomized rats. Pharmacol Rep. 2014;66(3):412–7.

    Article  CAS  PubMed  Google Scholar 

  80. Lapane KL, Yang S, Brown MJ, Jawahar R, Pagliasotti C, Rajpathak S. Sulfonylureas and risk of falls and fractures: a systematic review. Drugs Aging. 2013;30(7):527–47.

    Article  CAS  PubMed  Google Scholar 

  81. Bodmer M, Meier C, Kraenzlin ME, Meier CR. Risk of fractures with glitazones: a critical review of the evidence to date. Drug Saf. 2009;32(7):539–47.

    Article  CAS  PubMed  Google Scholar 

  82. Thrailkill KM, Lumpkin CK Jr, Bunn RC, Kemp SF, Fowlkes JL. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab. 2005;289(5):E735–45.

    Article  CAS  PubMed  Google Scholar 

  83. Bortolin RH, Freire Neto FP, Arcaro CA, Bezerra JF, da Silva FS, Ururahy MA, et al. Anabolic effect of insulin therapy on the bone: osteoprotegerin and osteocalcin up-regulation in streptozotocin-induced diabetic rats. Basic Clin Pharmacol Toxicol. 2017;120(3):227–34.

    Article  CAS  PubMed  Google Scholar 

  84. Basu R, Peterson J, Rizza R, Khosla S. Effects of physiological variations in circulating insulin levels on bone turnover in humans. J Clin Endocrinol Metab. 2011;96(5):1450–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang Y, Zhao C, Liang J, Yu M, Qu X. Effect of dipeptidyl peptidase-4 inhibitors on bone metabolism and the possible underlying mechanisms. Front Pharmacol. 2017;8:487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Christensen MB, Lund A, Calanna S, Jorgensen NR, Holst JJ, Vilsboll T, et al. Glucose-dependent Insulinotropic polypeptide (GIP) inhibits bone resorption independently of insulin and glycemia. J Clin Endocrinol Metab. 2018;103(1):288–94.

    Article  PubMed  Google Scholar 

  87. Wang C, Xiao F, Qu X, Zhai Z, Hu G, Chen X, et al. Sitagliptin, an anti-diabetic drug, suppresses estrogen deficiency-induced osteoporosisin vivo and inhibits RANKL-induced osteoclast formation and bone resorption in vitro. Front Pharmacol. 2017;8:407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Bethel MA, Patel RA, Merrill P, Lokhnygina Y, Buse JB, Mentz RJ, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 2018;6(2):105–13.

    Article  PubMed  Google Scholar 

  89. Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJ, Fraser WD. Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 2011;11:12 –6793-11-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yamada C, Yamada Y, Tsukiyama K, Yamada K, Udagawa N, Takahashi N, et al. The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology. 2008;149(2):574–9.

    Article  CAS  PubMed  Google Scholar 

  91. Hygum K, Harslof T, Jorgensen NR, Rungby J, Pedersen SB, Langdahl BL. Bone resorption is unchanged by liraglutide in type 2 diabetes patients: a randomised controlled trial. Bone. 2020;132:115197.

    Article  CAS  PubMed  Google Scholar 

  92. Iepsen EW, Lundgren JR, Hartmann B, Pedersen O, Hansen T, Jorgensen NR, et al. GLP-1 receptor agonist treatment increases bone formation and prevents bone loss in weight-reduced obese women. J Clin Endocrinol Metab. 2015;100(8):2909–17.

    Article  CAS  PubMed  Google Scholar 

  93. Johnson KC, Bray GA, Cheskin LJ, Clark JM, Egan CM, Foreyt JP, et al. The effect of intentional weight loss on fracture risk in persons with diabetes: results from the look AHEAD randomized clinical trial. J Bone Miner Res. 2017;32(11):2278–87.

    Article  PubMed  Google Scholar 

  94. Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME(R) trial. Eur Heart J. 2016;37(19):1526–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.

    Article  CAS  PubMed  Google Scholar 

  96. Thrailkill KM, Nyman JS, Bunn RC, Uppuganti S, Thompson KL, Lumpkin CK Jr, et al. The impact of SGLT2 inhibitors, compared with insulin, on diabetic bone disease in a mouse model of type 1 diabetes. Bone. 2017;94:141–51.

    Article  CAS  PubMed  Google Scholar 

  97. Ye Y, Zhao C, Liang J, Yang Y, Yu M, Qu X. Effect of sodium-glucose co-transporter 2 inhibitors on bone metabolism and fracture risk. Front Pharmacol. 2019;9:1517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Bilezikian JP, Watts NB, Usiskin K, Polidori D, Fung A, Sullivan D, et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J Clin Endocrinol Metab. 2016;101(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  99. Rosenstock J, Vico M, Wei L, Salsali A, List JF. Effects of dapagliflozin, an SGLT2 inhibitor, on HbA(1c), body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care. 2012;35(7):1473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. De Laet C, Kanis JA, Odén A, Johanson H, Johnell O, Delmas P, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16(11):1330–8.

    Article  PubMed  Google Scholar 

  101. Søgaard AJ, Holvik K, Omsland TK, Tell GS, Dahl C, Schei B, et al. Abdominal obesity increases the risk of hip fracture. A population-based study of 43,000 women and men aged 60-79 years followed for 8 years. Cohort of Norway. J Intern Med. 2015;277(3):306–17.

    Article  PubMed  Google Scholar 

  102. Napoli N, Strotmeyer ES, Ensrud KE, Sellmeyer DE, Bauer DC, Hoffman AR, et al. Fracture risk in diabetic elderly men: the MrOS study. Diabetologia. 2014;57(10):2057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gillespie LD, Gillespie WJ, Robertson MC, Lamb SE, Cumming RG, Rowe BH. Interventions for preventing falls in elderly people. Cochrane Database Syst Rev. 2003;(4):CD000340. https://doi.org/10.1002/14651858.CD000340.

  104. Yang Y, Hu X, Zhang Q, Zou R. Diabetes mellitus and risk of falls in older adults: a systematic review and meta-analysis. Age Ageing. 2016;45(6):761–7.

    Article  PubMed  Google Scholar 

  105. Roman de Mettelinge T, Cambier D, Calders P, Van Den Noortgate N, Delbaere K. Understanding the relationship between type 2 diabetes mellitus and falls in older adults: a prospective cohort study. PLoS One. 2013;8(6):e67055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Morrison S, Colberg SR, Parson HK, Vinik AI. Relation between risk of falling and postural sway complexity in diabetes. Gait Posture. 2012;35(4):662–8.

    Article  CAS  PubMed  Google Scholar 

  107. Li CI, Liu CS, Lin WY, Meng NH, Chen CC, Yang SY, Chen HJ, Lin CC, Li TC. Glycated hemoglobin level and risk of hip fracture in older people with type 2 diabetes: A competing risk analysis of taiwan diabetes cohort study. J Bone Miner Res. 2015;30(7):1338–46. https://doi.org/10.1002/jbmr.2462.

  108. Ivers RQ, Cumming RG, Mitchell P, Peduto AJ. Blue Mountains Eye Study. Diabetes and risk of fracture: the Blue Mountains Eye Study. Diabetes Care. 2001;24(7):1198–203.

    Article  CAS  PubMed  Google Scholar 

  109. Nakamura M, Inaba M, Yamada S, Ozaki E, Maruo S, Okuno S, et al. Association of decreased handgrip strength with reduced cortical thickness in Japanese female patients with type 2 diabetes mellitus. Sci Rep. 2018;8(1):10767 –018-29061-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Martinez-Laguna D, Tebe C, Javaid MK, Nogues X, Arden NK, Cooper C, et al. Incident type 2 diabetes and hip fracture risk: a population-based matched cohort study. Osteoporos Int. 2015;26(2):827–33.

    Article  CAS  PubMed  Google Scholar 

  111. Tebe C, Martinez-Laguna D, Carbonell-Abella C, Reyes C, Moreno V, Diez-Perez A, et al. The association between type 2 diabetes mellitus, hip fracture, and post-hip fracture mortality: a multi-state cohort analysis. Osteoporos Int. 2019;30(12):2407–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work has received funding by Steno Collaborative grant, Novo Nordisk Foundation Denmark (Grant no. NNF18OC0052064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Starup-Linde.

Ethics declarations

Zheer Al-Mashhadi and Jakob Starup-Linde drafted the manuscript, conducted the systematic literature search contributed to the interpretation of data, critical editing of written text, and approved the final version of the manuscript. Rikke Viggers, Rasmus Fuglsang-Nielsen, Frank de Vries, Joop van den Bergh, Torben Harsløf, Bente Langdahl, and Søren Gregersen contributed to the interpretation of data, critical editing of written text, and approved the final version of the manuscript.

Conflict of Interest

Z Al-Mashhadi, R Viggers, R Fuglsang-Nielsen, JP van den Bergh, T Harsløf and S Gregersen declare no conflict of interest.

J. Starup-Linde reports personal fees from GSK Pharma A/S and Gilead Sciences Denmark, outside the submitted work.

F. de Vries supervises three PhD students who are currently employed with F. Hoffmann La Roche Ltd. (Welwyn Garden City UK and Basel, Switzerland). The topics of their PhDs do not relate to the current study. Dr. de Vries has not received any fees or reimbursements for this.

JP van den Bergh reports grants from Amgen, UCB and Eli-Lilly and personal fees from UCB and Amgen outside the submitted work.

B. Langdahl reports grants from Amgen, grants from Novo Nordisk, personal fees from Amgen, personal fees from UCB, personal fees from Gedeon-Richter, personal fees from Gilead, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

PRISMA flow diagram adapted from From Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:https://doi.org/10.1371/journal.pmed1000097

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Bone and Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mashhadi, Z., Viggers, R., Fuglsang-Nielsen, R. et al. Glucose-Lowering Drugs and Fracture Risk—a Systematic Review. Curr Osteoporos Rep 18, 737–758 (2020). https://doi.org/10.1007/s11914-020-00638-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00638-8

Keywords

Navigation