Skip to main content

Advertisement

Log in

The Effect of Opiates on Bone Formation and Bone Healing

  • Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Opioids have been shown to be associated with an increased risk of fracture. The purpose of this paper is to review recent research into the effects of opioids on bone formation and bone healing in animal models and in human studies.

Recent Findings

Most opioids, such as morphine and fentanyl, negatively affected bone remodeling and bone healing in animal models. Conversely, remifentanil has been recently shown to promote in vitro osteoblast differentiation and to inhibit differentiation and maturation of osteoclasts, therefore reducing bone resorption. According to the possible negative role of opioids in bone healing, opioid antagonists have been shown to enhance bone mineralization, suggesting a possible therapeutic role in the future for osteoporosis. Other neuropeptides, such as the vasoactive intestinal peptide (VIP) and the neuropeptide Y (NPY), have been proved to promote osteogenesis.

The increased risk of fractures among opioid users may be related to their central nervous system side effects or to the reduced bone density, partly due to their endocrine effects, and partly to their direct activity on bone cells. Clinical data strongly suggested a potential negative effect of opioids in bone healing. The risk of nonunion fracture is significantly increased in opioid users, and bone mass density was reduced in patients under long-term opioid treatment.

Summary

The direct effects of opioids on bone remodeling appears evident from these reports. Not all opioids have the same potential for negatively impacting bone healing. Opioid antagonists may increase bone density and could represent a possible future treatment for low bone mass density pathologies. However, further trials are warranted to clarify the clinical relevance of these emerging findings from animal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

5AR:

5 alpha reductase

AD :

Alzheimer’s disease

BDL:

Bile duct ligated

cAMP:

3′,5′-cyclic adenosine monophosphate

CI:

Confidence interval

CNCP:

Chronic non-cancer pain

CNS:

Central nervous system

DHT:

Dihydrotestosterone

FSH:

Follicle stimulating hormone

GnRH:

Gonadotropin-releasing hormone

H2O2 :

Hydrogen peroxide

hFOB:

Human fetal osteoblast

HPG:

Hypothalamus-pituitary-gonadal (axis)

HR:

Hazard ratio

ICU:

Intensive care unit

IL-6:

Interleukin-6

IL-10:

Interleukin-10

KOR :

Kappa-opioid receptor

LH:

Luteinizing hormone

met-enk:

Methionine-enkephalin

MMT:

Methadone maintenance therapy

MOR:

mu-opioid receptor

NPY:

Neuropeptide Y

NSAIDs:

Nonsteroidal anti-inflammatory drugs

OA:

Osteoarthritis

OGF:

Opioid growth factor

OGFR:

Opioid growth factor receptor

OGF-OGFR:

Opioid growth factor-opioid growth factor receptor (pathway)

OPIAD:

Opioid-induced androgen deficiency

OR:

Odds ratio

PAMORA:

Peripheral acting mu-opioid receptor antagonist

PKA:

Protein kinase A

RANKL:

Receptor activator of nuclear factor kappa-Β ligand

ROS:

Reactive oxygen species

Runx2:

Runt-related transcription factor 2

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

US:

United States of America

VIP:

Vasoactive intestinal peptide

VIP/NPY:

Vasoactive intestinal peptide/neuropeptide Y

Vs:

Versus

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Buckeridge D, Huang A, Hanley J, Kelome A, Reidel K, Verma A, et al. Risk of injury associated with opioid use in older adults. J Am Geriatr Soc. 2010;58(9):1664–70.

    Article  PubMed  Google Scholar 

  2. Pergolizzi JV, Lequang JA, Passik S, Coluzzi F. Using opioid therapy for pain in clinically challenging situations: questions for clinicians. Minerva Anestesiol. 2019;85(8):899–908.

    Article  PubMed  Google Scholar 

  3. Torchia MT, Munson J, Tosteson TD, Tosteson ANA, Wang Q, McDonough CM, et al. Patterns of opioid use in the 12 months following geriatric fragility fractures: a population-based cohort study. J Am Med Dir Assoc. 2019;20(3):298–304.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mattia C, Di Bussolo E, Coluzzi F. Non-analgesic effects of opioids: the interaction of opioids with bone and joints. Curr Pharm Des. 2012;18(37):6005–9.

    Article  CAS  PubMed  Google Scholar 

  5. Pérez-Castrillón JL, Olmos JM, Gómez JJ, Barrallo A, Riancho JA, Perera L, et al. Expression of opioid receptors in osteoblast-like MG-63 cells, and effects of different opioid agonists on alkaline phosphatase and osteocalcin secretion by these cells. Neuroendocrinology. 2000;72:187–94.

    Article  PubMed  Google Scholar 

  6. Wilhelm W, Kreuer S. The place for short-acting opioids: special emphasis on remifentanil. Crit Care. 2008;12(Suppl 3):S5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yoon JY, Kim DW, Kim EJ, Park BS, Yoon JU, Kim HJ, et al. Protective effects of remifentanil against H2O2-induced oxidative stress in human osteoblasts. J Dent Anesth Pain Med. 2016;16(4):263–71.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yoon JY, Kim TS, Ahn JH, Yoon JU, Kim HJ, Kim EJ. Remifentanil promotes osteoblastogenesis by upregulating Runx2/osterix expression in preosteoblastic C2C12 cells. J Dent Anesth Pain Med. 2019;19(2):91–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A, et al. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene. 2004;23(24):4315–29.

    Article  CAS  PubMed  Google Scholar 

  10. Baik SW, Park BS, Kim YH, Kim YD, Kim CH, Yoon JY, et al. Effects of remifentanil preconditioning on osteoblasts under hypoxia-reoxygenation condition. Int J Med Sci. 2015;12(7):583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. • Yoon JY, Baek CW, Kim HJ, Kim EJ, Byeon GJ, Yoon JU. Remifentanil negatively regulates RANKL-induced osteoclast differentiation and bone resorption by inhibiting c-Fos/NFATc1 expression. Tissue Eng Regen Med. 2018;15(3):333–40. This paper showed in vitro the negative effects of remifentanil on osteoclast differentiation, suggesting a different effect of this specific opioid agonist compared with the others.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chrastil J, Sampson C, Jones KB, Higgins TF. Postoperative opioid administration inhibits bone healing in an animal model. Clin Orthop Relat Res. 2013;471:4076–81.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jain N, Himed K, Toth JM, Briley KC, Phillips FM, Khan SN. Opioids delay healing of spinal fusion: a rabbit posterolateral lumbar fusion model. Spine J. 2018;18(9):1659–68.

    Article  PubMed  Google Scholar 

  14. Akhoundi MS, Dehpour AR, Rashidpour M, Alaeddini M, Kharazifard MJ, Noroozi H. The effect of morphine on orthodontic tooth movement in rats. Aust Orthod J. 2010;26:113–8.

    PubMed  Google Scholar 

  15. Janas A, Folwarczna J. Opioid receptor agonists may favorably affect bone mechanical properties in rats with estrogen deficiency-induced osteoporosis. Naunyn Schmiedeberg's Arch Pharmacol. 2017;390(2):175–85.

    Article  CAS  Google Scholar 

  16. •• Coluzzi F, Billeci D, Maggi M, Corona G. Testosterone deficiency in non-cancer opioid-treated patients. J Endocrinol Investig. 2018;41(12):1377–88. This review provides a through description of the endocrine effects of opioids and their clinical consequences.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boshra V. Evaluation of osteoporosis risk associated with chronic use of morphine, fentanyl and tramadol in adult female rats. Curr Drug Saf. 2011;6:159–63.

    Article  CAS  PubMed  Google Scholar 

  18. King T, Vardanyan A, Majuta L, Melemedjian O, Nagle R, Cress AE, et al. Morphine treatment accelerates sarcoma-induced bone pain, bone loss, and spontaneous fracture in a murine model of bone cancer. Pain. 2007;132:154–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petrizzi L, Mariscoli M, Valbonetti L, Varasano V, Langhoff JD, Von Rechenberg B. Preliminary study on the effect of parenteral naloxone, alone and in association with calcium gluconate, on bone healing in an ovine “drill hole” model system. BMC Musculoskelet Disord. 2007;8:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. • Tanaka K, Kondo H, Hamamura K, Togari A. Systemic administration of low-dose naltrexone increases bone mass due to blockade of opioid growth factor receptor signaling in mice osteoblasts. Life Sci. 2019;224:232–40. This paper focused on the effects of opioid antagonists on bone metabolism, suggesting a potential role for opioid receptor blockers as therapeutic agents for osteoporosis.

    Article  CAS  PubMed  Google Scholar 

  21. Thakur NA, DeBoyace SD, Margulies BS. Antagonism of the Met5-enkephalin-opioid growth factor receptor-signaling axis promotes MSC to differentiate into osteoblasts. J Orthop Res. 2016;34(7):1195–205.

    Article  CAS  PubMed  Google Scholar 

  22. Moradi M, Doustimotlagh AH, Dehpour AR, Rahimi N, Golestani A. The influence of TRAIL, adiponectin and sclerostin alterations on bone loss in BDL-induced cirrhotic rats and the effect of opioid system blockade. Life Sci. 2019;233:116706.

    Article  CAS  PubMed  Google Scholar 

  23. Queiroz-Junior CM, Maltos KL, Pacheco DF, Silva TA, Albergaria JD, Pacheco CM. Endogenous opioids regulate alveolar bone loss in a periodontal disease model. Life Sci. 2013;93(12–14):471–7.

    Article  CAS  PubMed  Google Scholar 

  24. Bastos JV, Queiroz-Junior CM, Caliari MV, Francischi JN, Pacheco CM, Maltos KL. Peripheral kappa opioid receptors activation reduces alveolar bone loss in rats by modulating interleukin-6 and -10. Arch Oral Biol. 2011;56(6):540–8.

    Article  CAS  PubMed  Google Scholar 

  25. Xie W, Li F, Han Y, Li Z, Xiao J. Neuropeptides are associated with pain threshold and bone microstructure in ovariectomized rats. Neuropeptides. 2019;13:101995.

    Google Scholar 

  26. Grässel S, Muschter D. Do neuroendocrine peptides and their receptors qualify as novel therapeutic targets in osteoarthritis? Int J Mol Sci. 2018;19(2).

  27. Jiang W, Wang H, Li YS, Luo W. Role of vasoactive intestinal peptide in osteoarthritis. J Biomed Sci. 2016;23(1):63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Farmer AD, Holt CB, Downes TJ, Ruggeri E, Del Vecchio S, De Giorgio R. Pathophysiology, diagnosis, and management of opioid-induced constipation. Lancet Gastroenterol Hepatol. 2018;3(3):203–12.

    Article  PubMed  Google Scholar 

  29. Lay J, Carbone SE, DiCello JJ, Bunnett NW, Canals M, Poole DP. Distribution and trafficking of the -opioid receptor in enteric neurons of the guinea pig. Am J Physiol Gastrointest Liver Physiol. 2016;311:G252–66.

    Article  PubMed  Google Scholar 

  30. Galligan JJ, Akbarali HI. Molecular physiology of enteric opioid receptors. Am J Gastroenterol. 2014;2:17–21.

    Article  CAS  Google Scholar 

  31. Ensrud KE, Blackwell T, Mangione CM, et al. Study of osteoporotic fractures research group. Central nervous system active medications and risk for fractures in older women. Arch Intern Med. 2003;163(8):949–57.

    Article  PubMed  Google Scholar 

  32. Taipale H, Hamina A, Karttunen N, Koponen M, Tanskanen A, Tiihonen J, et al. Incident opioid use and risk of hip fracture among persons with Alzheimer disease: a nationwide matched cohort study. Pain. 2019;160(2):417–23.

    Article  CAS  PubMed  Google Scholar 

  33. Waade RB, Molden E, Martinsen MI, Hermann M, Ranhoff AH. Psychotropics and weak opioid analgesics in plasma samples of older hip fracture patients - detection frequencies and consistency with drug records. Br J Clin Pharmacol. 2017;83(7):1397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zura R, Xiong Z, EinhornTA WJT, Ostrum RF, Prayson MJ, et al. Epidemiology of fracture nonunion in 18 human bones. JAMA Sur. 2016;151(11).

    Article  PubMed  Google Scholar 

  35. Buchheit T, Zura R, Wang Z, Mehta S, Della Rocca GJ, Steen RG. Opioid exposure is associated with nonunion risk in a traumatically injured population: an inception cohort study. Injury. 2018;49(7):1266–71.

    Article  PubMed  Google Scholar 

  36. Jantzen C, Madsen CM, Abrahamsen B, Van Der Mark S, Duus BR, Howland J, et al. Pre-fracture medication use as a predictor of 30-day mortality in hip fracture patients: an analysis of 141,201 patients. Hip Int. 2019;1:1120700019832603.

    Google Scholar 

  37. Vestergaard P, Rejnmark L, Mosekilde L. Fracture risk associated with the use of morphine and opiates. J Intern Med. 2006;260(1):76–87.

    Article  CAS  PubMed  Google Scholar 

  38. Li L, Setoguchi S, Cabral H, Jick S. Opioid use for noncancer pain and risk of fracture in adults: a nested case-control study using the general practice research database. Am J Epidemiol. 2013;178(4):559–69.

    Article  PubMed  Google Scholar 

  39. Sabatowski R, Schwalen S, Rettig K, Herberg KW, Kasper SM, Radbruch L. Driving ability under long-term treatment with transdermal fentanyl. J Pain Symptom Manag. 2003;25(1):38–47.

    Article  CAS  Google Scholar 

  40. Vestergaard P, Hermann P, Jensen JE, Eiken P, Mosekilde L. Effects of paracetemol, non-steroidal anti-inflammatory drugs, acetylsalicylic acid, and opioids on bone mineral density and risk of fracture: results of the Danish Osteoporosis Prevention Study (DOPS). Osteoporos Int. 2012;23(4):1255–65.

    Article  CAS  PubMed  Google Scholar 

  41. •• Coluzzi F, Pergolizzi J, Raffa RB, Mattia C. The unsolved case of “bone-impairing analgesics”: the endocrine effects of opioids on bone metabolism. Ther Clin Risk Manag. 2015;11:515–23. This paper focused on the increased incidence of fractures among opioid users, and the different mechanisms involved, including the endocrine effects of opioids on bone metabolism.

  42. Kim TW, Alford DP, Malabanan A, Holick MF, Samet JH. Low bone density in patients receiving methadone maintenance treatment. Drug Alcohol Depend. 2006;85(3):258–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grey A, Rix-Trott K, Horne A, Gamble G, Bolland M, Reid IR. Decreased bone density in men on methadone maintenance therapy. Addiction. 2011;106(2):349–54.

    Article  PubMed  Google Scholar 

  44. Ding Z, Chen Y, Wang X, Zhou X, Xu Y, Ma Z, et al. A comparison of bone quality and its determinants in young opioid-dependent women with healthy control group. Drug Alcohol Depend. 2017;175:232–6.

    Article  PubMed  Google Scholar 

  45. Fortin JD, Bailey GM, Vilensky JA. Does opioid use for pain management warrant routine bone mass density screening in men? Pain Physician. 2008;11(4):539–41.

    PubMed  Google Scholar 

  46. Fraser LA, Morrison D, Morley-Forster P, Paul TL, Tokmakejian S, Larry Nicholson R, et al. Oral opioids for chronic non-cancer pain: higher prevalence of hypogonadism in men than in women. Exp Clin Endocrinol Diabetes. 2009;117(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  47. Ceccarelli I, De Padova AM, Fiorenzani P, Massafra C, Aloisi AM. Single opioid administration modifies gonadal steroids in both the CNS and plasma of male rats. Neuroscience. 2006;140(3):929–37.

    Article  CAS  PubMed  Google Scholar 

  48. Varma A, Sapra M, Iranmanesh A. Impact of opioid therapy on gonadal hormones: focus on buprenorphine. Horm Mol Biol Clin Invest. 2018;17:36(2).

    Google Scholar 

  49. Eichenbaum G, Göhler K, Etropolski M, Steigerwald I, Pergolizzi J, Kim M, et al. Does tapentadol affect sex hormone concentrations differently from morphine and oxycodone? An initial assessment and possible implications for opioid-induced androgen deficiency. J Opioid Manag. 2015;11(3):211–27.

    Article  PubMed  Google Scholar 

  50. Rubinstein AL, Carpenter DM. Association between commonly prescribed opioids and androgen deficiency in men: a retrospective cohort analysis. Pain Med. 2017;18(4):637–44.

    PubMed  PubMed Central  Google Scholar 

  51. Raffa RB, Elling C, Tzschentke TM. Does ‘strong analgesic’ equal ‘strong opioid’? Tapentadol and the concept of ‘μ-load’. Adv Ther. 2018;35(10):1471–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu EH, Tran DH, Lam SW, Irwin MG. Remifentanil tolerance and hyperalgesia: short-term gain, long-term pain? Anaesthesia. 2016;71(11):1347–62.

    Article  CAS  PubMed  Google Scholar 

  53. O'Brien T, Christrup LL, Drewes AM, Fallon MT, Kress HG, McQuay HJ, et al. European Pain Federation position paper on appropriate opioid use in chronic pain management. Eur J Pain. 2017;21(1):3–19.

    Article  CAS  PubMed  Google Scholar 

  54. Streicher JM, Bilsky EJ. Peripherally acting μ-opioid receptor antagonists for the treatment of opioid-related side effects: mechanism of action and clinical implications. J Pharm Pract. 2017 Sep;25:897190017732263.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flaminia Coluzzi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Skeletal Biology and Regulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coluzzi, F., Scerpa, M.S. & Centanni, M. The Effect of Opiates on Bone Formation and Bone Healing. Curr Osteoporos Rep 18, 325–335 (2020). https://doi.org/10.1007/s11914-020-00585-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00585-4

Keywords

Navigation