Skip to main content

Advertisement

Log in

Updates in CKD-Associated Osteoporosis

  • Kidney and Bone (I Salusky and T Nickolas, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Chronic kidney disease (CKD) is associated with bone loss and fractures. The purpose of this review is to provide clinicians with an overview of the underlying pathogenesis of CKD-associated osteoporosis, and a summary of the current diagnostic and therapeutic approaches to this disease.

Recent Findings

In 2017, the Kidney Disease Improving Global Outcomes Committee on Bone Quality updated their guidelines to include screening for osteoporosis and fracture risk by dual energy X-ray absorptiometry in patients with CKD. Once a diagnosis of osteoporosis and/or fracture risk is established, it is not clear how nephrologists should manage their patients.

Summary

Patients with CKD should be screened for CKD-associated osteoporosis and considered for strategies that prevent bone loss and fractures. Assessment of bone turnover via imaging, biochemical testing, or bone biopsy can help guide the choice of therapy. Randomized controlled trials are needed to assess safety and efficacy of treatments to prevent bone loss and fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bikbov B, Perico N, Remuzzi G, on behalf of the GBDGDEG. Disparities in chronic kidney disease prevalence among males and females in 195 countries: analysis of the Global Burden of Disease 2016 Study. Nephron. 2018:1–6.

  2. Alem AM, Sherrard DJ, Gillen DL, et al. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int. 2000;58:396–9.

    Article  CAS  PubMed  Google Scholar 

  3. Kim SM, Long J, Montez-Rath M, Leonard M, Chertow GM. Hip fracture in patients with non-dialysis-requiring chronic kidney disease. J Bone Miner Res Off J Am Soc Bone Miner Res. 2016;31:1803–9.

    Article  Google Scholar 

  4. NIH Consensus Development Panel on Osteoporosis Prevention. Diagnosis, and Therapy, March 7-29, 2000: highlights of the conference. South Med J. 2001;94:569–73.

    Google Scholar 

  5. Nickolas TL, Stein E, Cohen A, et al. Bone mass and microarchitecture in CKD patients with fracture. J Am Soc Nephrol. 2010;21:1371–80.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Klawansky S, Komaroff E, Cavanaugh PF Jr, et al. Relationship between age, renal function and bone mineral density in the US population. Osteoporos Int. 2003;14:570–6.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma AK, Toussaint ND, Masterson R, et al. Deterioration of cortical bone microarchitecture: critical component of renal osteodystrophy evaluation. Am J Nephrol. 2018;47:376–84.

    Article  CAS  PubMed  Google Scholar 

  8. • Malluche HH, Mawad HW, Monier-Faugere MC. Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J Bone Miner Res. 2011;26:1368–76 This paper defined the characteristics of renal osteodystrophy in the contemporary era, in light of the marked differences that have occurred over the past several decades in the management of CKD-MBD.

    Article  PubMed  Google Scholar 

  9. Carvalho C, Magalhaes J, Neto R, et al. Cortical bone analysis in a predialysis population: a comparison with a dialysis population. J Bone Miner Metab. 2016.

  10. Nickolas TL, Stein EM, Dworakowski E, et al. Rapid cortical bone loss in patients with chronic kidney disease. J Bone Miner Res. 2013;28:1811–20.

    Article  CAS  PubMed  Google Scholar 

  11. Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28:195–201.

    Article  CAS  PubMed  Google Scholar 

  12. McNerny EMB, Nickolas TL. Bone quality in chronic kidney disease: definitions and diagnostics. Curr Osteoporos Rep. 2017;15:207–13.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wesseling-Perry K, Pereira RC, Tseng CH, et al. Early skeletal and biochemical alterations in pediatric chronic kidney disease. Clin J Am Soc Nephrol. 2012;7:146–52.

    Article  CAS  PubMed  Google Scholar 

  14. Drueke TB, Massy ZA. Changing bone patterns with progression of chronic kidney disease. Kidney Int. 2016;89:289–302.

    Article  PubMed  Google Scholar 

  15. Graciolli FG, Neves KR, Barreto F, et al. The complexity of chronic kidney disease-mineral and bone disorder across stages of chronic kidney disease. Kidney Int. 2017;91:1436–46.

    Article  CAS  PubMed  Google Scholar 

  16. Barker SL, Pastor J, Carranza D, et al. The demonstration of alphaKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol Dial Transplant. 2015;30:223–33.

    Article  CAS  PubMed  Google Scholar 

  17. Nakatani T, Sarraj B, Ohnishi M, et al. In vivo genetic evidence for klotho-dependent, fibroblast growth factor 23 (Fgf23) -mediated regulation of systemic phosphate homeostasis. FASEB J. 2009;23:433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaludjerovic J, Komaba H, Lanske B. Effects of klotho deletion from bone during chronic kidney disease. Bone. 2017;100:50–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Komaba H, Kaludjerovic J, Hu DZ, et al. Klotho expression in osteocytes regulates bone metabolism and controls bone formation. Kidney Int. 2017;92:599–611.

    Article  CAS  PubMed  Google Scholar 

  20. Wang H, Yoshiko Y, Yamamoto R, et al. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res Off J Am. Soc Bone Miner Res. 2008;23:939–48.

    Article  CAS  Google Scholar 

  21. Akchurin OM, Kaskel F. Update on inflammation in chronic kidney disease. Blood Purif. 2015;39:84–92.

    Article  CAS  PubMed  Google Scholar 

  22. Rossini M, Gatti D, Adami S. Involvement of WNT/beta-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int. 2013;93:121–32.

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Zhang Y, Kang H, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280:19883–7.

    Article  CAS  PubMed  Google Scholar 

  24. Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One. 2011;6:e25900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang SY, Liu YY, Ye H, et al. Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol. 2011;38:821–7.

    Article  CAS  PubMed  Google Scholar 

  26. Gupta J, Mitra N, Kanetsky PA, et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin J Am Soc Nephrol. 2012;7:1938–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heiland GR, Zwerina K, Baum W, et al. Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis. 2010;69:2152–9.

    Article  CAS  PubMed  Google Scholar 

  28. Cejka D, Herberth J, Branscum AJ, et al. Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol. 2011;6:877–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sabbagh Y, Graciolli FG, O'Brien S, et al. Repression of osteocyte Wnt/beta-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res. 2012;27:1757–72.

    Article  CAS  PubMed  Google Scholar 

  30. Naylor KL, McArthur E, Leslie WD, et al. The three-year incidence of fracture in chronic kidney disease. Kidney Int. 2014;86:810–8.

    Article  PubMed  Google Scholar 

  31. Nickolas TL, McMahon DJ, Shane E. Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol. 2006;17:3223–32.

    Article  PubMed  Google Scholar 

  32. Mittalhenkle A, Gillen DL, Stehman-Breen CO. Increased risk of mortality associated with hip fracture in the dialysis population. Am J Kidney Dis. 2004;44:672–9.

    Article  PubMed  Google Scholar 

  33. Moe S, Drueke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69:1945–53.

    Article  CAS  PubMed  Google Scholar 

  34. Spasovski GB, Bervoets AR, Behets GJ, et al. Spectrum of renal bone disease in end-stage renal failure patients not yet on dialysis. Nephrol Dial Transplant. 2003;18:1159–66.

    Article  CAS  PubMed  Google Scholar 

  35. Tomiyama C, Carvalho AB, Higa A, Jorgetti V, Draibe SA, Canziani ME. Coronary calcification is associated with lower bone formation rate in CKD patients not yet in dialysis treatment. J Bone Miner Res Off J Am Soc Bone Miner Res. 2010;25:499–504.

    Article  CAS  Google Scholar 

  36. Lehmann G, Ott U, Kaemmerer D, Schuetze J, Wolf G. Bone histomorphometry and biochemical markers of bone turnover in patients with chronic kidney disease stages 3–5. Clin Nephrol. 2008;70:296–305.

    Article  CAS  PubMed  Google Scholar 

  37. Sprague SM, Bellorin-Font E, Jorgetti V, et al. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis. 2015.

  38. Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987;2:595–610.

    Article  CAS  PubMed  Google Scholar 

  39. Barreto FC, Barreto DV, Moyses RM, et al. Osteoporosis in hemodialysis patients revisited by bone histomorphometry: a new insight into an old problem. Kidney Int. 2006;69:1852–7.

    Article  CAS  PubMed  Google Scholar 

  40. Iimori S, Mori Y, Akita W, et al. Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients--a single-center cohort study. Nephrol Dial Transplant. 2012;27:345–51.

    Article  CAS  PubMed  Google Scholar 

  41. •• Yenchek RH, Ix JH, Shlipak MG, et al. Bone mineral density and fracture risk in older individuals with CKD. Clin J Am Soc Nephrol. 2012;7:1130–6 This was the first study to demonstrate that measurement of BMD by DXA predicted fracture in CKD patients with similar accuracy to that of patients with healthy kidney function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. West SL, Lok CE, Langsetmo L, et al. Bone mineral density predicts fractures in chronic kidney disease. J Bone Miner Res. 2015;30:913–9.

    Article  PubMed  Google Scholar 

  43. Ketteler M, Block GA, Evenepoel P, et al. Executive summary of the 2017 KDIGO chronic kidney disease–mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int. 2017;92:26–36.

    Article  PubMed  Google Scholar 

  44. Jamal SA, Nickolas TL. Bone imaging and fracture risk assessment in kidney disease. Current osteoporosis reports. 2015;13:166–72.

    Article  PubMed  Google Scholar 

  45. Nickolas TL, Cremers S, Zhang A, et al. Discriminants of prevalent fractures in chronic kidney disease. J Am Soc Nephrol. 2011;22:1560–72.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ketteler M, Block GA, Evenepoel P, et al. Executive summary of the 2017 KDIGO chronic kidney disease-mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int. 2017;92:26–36.

    Article  PubMed  Google Scholar 

  47. Coyne D, Acharya M, Qiu P, et al. Paricalcitol capsule for the treatment of secondary hyperparathyroidism in stages 3 and 4 CKD. Am J Kidney Dis. 2006;47:263–76.

    Article  CAS  PubMed  Google Scholar 

  48. Coyne DW, Goldberg S, Faber M, Ghossein C, Sprague SM. A randomized multicenter trial of paricalcitol versus calcitriol for secondary hyperparathyroidism in stages 3-4 CKD. Clin J Am Soc Nephrol. 2014;9:1620–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sprague SM, Llach F, Amdahl M, Taccetta C, Batlle D. Paricalcitol versus calcitriol in the treatment of secondary hyperparathyroidism. Kidney Int. 2003;63:1483–90.

    Article  CAS  PubMed  Google Scholar 

  50. Coen G, Mantella D, Manni M, et al. 25-hydroxyvitamin D levels and bone histomorphometry in hemodialysis renal osteodystrophy. Kidney Int. 2005;68:1840–8.

    Article  CAS  PubMed  Google Scholar 

  51. Tsuruta Y, Okano K, Kikuchi K, Tsuruta Y, Akiba T, Nitta K. Effects of cinacalcet on bone mineral density and bone markers in hemodialysis patients with secondary hyperparathyroidism. Clin Exp Nephrol. 2013;17:120–6.

    Article  CAS  PubMed  Google Scholar 

  52. Behets GJ, Spasovski G, Sterling LR, et al. Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int. 2015;87:846–56.

    Article  CAS  PubMed  Google Scholar 

  53. Moe SM, Abdalla S, Chertow GM, et al. Effects of cinacalcet on fracture events in patients receiving hemodialysis: the EVOLVE trial. J Am Soc Nephrol. 2014.

  54. Ballinger AE, Palmer SC, Nistor I, Craig JC, Strippoli GF. Calcimimetics for secondary hyperparathyroidism in chronic kidney disease patients. Cochrane Database Syst Rev. 2014:Cd006254.

  55. Block GA, Bushinsky DA, Cheng S, et al. Effect of etelcalcetide vs cinacalcet on serum parathyroid hormone in patients receiving hemodialysis with secondary hyperparathyroidism: a randomized clinical trial. JAMA. 2017;317:156–64.

    Article  CAS  PubMed  Google Scholar 

  56. Brauer CA, Coca-Perraillon M, Cutler DM, Rosen AB. Incidence and mortality of hip fractures in the United States. JAMA. 2009;302:1573–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wilson LM, Rebholz CM, Jirru E, et al. Benefits and harms of osteoporosis medications in patients with chronic kidney disease: a systematic review and meta-analysis. Ann Intern Med. 2017;166:649–58.

    Article  PubMed  Google Scholar 

  58. Chavassieux PM, Arlot ME, Reda C, Wei L, Yates AJ, Meunier PJ. Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest. 1997;100:1475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Recker RR, Delmas PD, Halse J, et al. Effects of intravenous zoledronic acid once yearly on bone remodeling and bone structure. J Bone Miner Res OffJ Am Soc Bone Miner Res. 2008;23:6–16.

    Article  CAS  Google Scholar 

  60. Miller PD, Roux C, Boonen S, Barton IP, Dunlap LE, Burgio DE. Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the cockcroft and gault method: a pooled analysis of nine clinical trials. J Bone Miner Res. 2005;20:2105–15.

    Article  CAS  PubMed  Google Scholar 

  61. Jamal SA, Bauer DC, Ensrud KE, et al. Alendronate treatment in women with normal to severely impaired renal function: an analysis of the fracture intervention trial*. J Bone Miner Res. 2007.

  62. Miller PD, Roux C, Boonen S, Barton IP, Dunlap LE, Burgio DE. Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the Cockcroft and Gault method: a pooled analysis of nine clinical trials. J Bone Miner Res Off J Am Soc Bone Miner Res. 2005;20:2105–15.

    Article  CAS  Google Scholar 

  63. Shigematsu T, Muraoka R, Sugimoto T, Nishizawa Y. Risedronate therapy in patients with mild-to-moderate chronic kidney disease with osteoporosis: post-hoc analysis of data from the risedronate phase III clinical trials. BMC Nephrol. 2017;18:66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Toussaint ND, Lau KK, Strauss BJ, Polkinghorne KR, Kerr PG. Effect of alendronate on vascular calcification in CKD stages 3 and 4: a pilot randomized controlled trial. Am J Kidney Dis. 2010;56:57–68.

    Article  CAS  PubMed  Google Scholar 

  65. Bergner R, Henrich D, Hoffmann M, Schmidt-Gayk H, Lenz T, Upperkamp M. Treatment of reduced bone density with ibandronate in dialysis patients. J Nephrol. 2008;21:510–6.

    CAS  PubMed  Google Scholar 

  66. Ota M, Takahata M, Shimizu T, et al. Efficacy and safety of osteoporosis medications in a rat model of late-stage chronic kidney disease accompanied by secondary hyperparathyroidism and hyperphosphatemia. Osteoporos Int. 2017;28:1481–90.

    Article  CAS  PubMed  Google Scholar 

  67. Jamal SA, Ljunggren O, Stehman-Breen C, et al. Effects of denosumab on fracture and bone mineral density by level of kidney function. J Bone Miner Res. 2011;26:1829–35.

    Article  CAS  PubMed  Google Scholar 

  68. Cummings SR, San Martin J, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361:756–65.

    Article  CAS  PubMed  Google Scholar 

  69. Chen CL, Chen NC, Hsu CY, et al. An open-label, prospective pilot clinical study of denosumab for severe hyperparathyroidism in patients with low bone mass undergoing dialysis. J Clin Endocrinol Metab. 2014;99(7):2426–32.

    Article  CAS  Google Scholar 

  70. Block GA, Bone HG, Fang L, Lee E, Padhi D. A single-dose study of denosumab in patients with various degrees of renal impairment. J Bone Miner Res. 2012;27:1471–9.

    Article  CAS  PubMed  Google Scholar 

  71. McCormick BB, Davis J, Burns KD. Severe hypocalcemia following denosumab injection in a hemodialysis patient. Am J Kidney Dis. 2012;60:626–8.

    Article  PubMed  Google Scholar 

  72. Salim SA, Nair LR, Thomas L, et al. Denosumab-associated severe hypocalcemia in a patient with chronic kidney disease. Am J Med Sci. 2018;355:506–9.

    Article  PubMed  Google Scholar 

  73. Festuccia F, Jafari MT, Moioli A, et al. Safety and efficacy of denosumab in osteoporotic hemodialysed patients. J Nephrol. 2017;30:271–9.

    Article  CAS  PubMed  Google Scholar 

  74. Lindsay R, Nieves J, Formica C, et al. Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet. 1997;350:550–5.

    Article  CAS  PubMed  Google Scholar 

  75. Cohen A, Kamanda-Kosseh M, Recker RR, et al. Bone density after teriparatide discontinuation in premenopausal idiopathic osteoporosis. J Clin Endocrinol Metab. 2015;100:4208–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.

    Article  CAS  PubMed  Google Scholar 

  77. Saag KG, Shane E, Boonen S, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med. 2007;357:2028–39.

    Article  CAS  PubMed  Google Scholar 

  78. Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF. Recombinant human parathyroid hormone (1-34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res Off J Am Soc Bone Miner Res. 2003;18:1932–41.

    Article  CAS  Google Scholar 

  79. Chen P, Miller PD, Recker R, et al. Increases in BMD correlate with improvements in bone microarchitecture with teriparatide treatment in postmenopausal women with osteoporosis. J Bone Miner Res Off J Am Soc Bone Miner Res. 2007;22:1173–80.

    Article  CAS  Google Scholar 

  80. Miller PD, Schwartz EN, Chen P, Misurski DA, Krege JH. Teriparatide in postmenopausal women with osteoporosis and mild or moderate renal impairment. Osteoporos Int. 2007;18:59–68.

    Article  CAS  PubMed  Google Scholar 

  81. Imai H, Watanabe M, Fujita T, Watanabe H, Harada K, Moritoyo T. Pharmacokinetics of teriparatide after subcutaneous administration to volunteers with renal failure: a pilot study. Int J Clin Pharmacol Ther. 2014;52:166–74.

    Article  CAS  PubMed  Google Scholar 

  82. Ishani A, Blackwell T, Jamal SA, Cummings SR, Ensrud KE, Investigators M. The effect of raloxifene treatment in postmenopausal women with CKD. J Am Soc Nephrol. 2008;19:1430–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cejka D, Benesch T, Krestan C, et al. Effect of teriparatide on early bone loss after kidney transplantation. Am J Transplant. 2008;8:1864–70.

    Article  CAS  PubMed  Google Scholar 

  84. Cejka D, Kodras K, Bader T, Haas M. Treatment of hemodialysis-associated adynamic bone disease with teriparatide (PTH1-34): a pilot study. Kidney Blood Press Res. 2010;33:221–6.

    Article  CAS  PubMed  Google Scholar 

  85. Palcu P, Dion N, Ste-Marie LG, et al. Teriparatide and bone turnover and formation in a hemodialysis patient with low-turnover bone disease: a case report. Am J Kidney Dis. 2015;65:933–6.

    Article  CAS  PubMed  Google Scholar 

  86. Sumida K, Ubara Y, Hoshino J, et al. Once-weekly teriparatide in hemodialysis patients with hypoparathyroidism and low bone mass: a prospective study. Osteoporos Int. 2016;27:1441–50.

    Article  CAS  PubMed  Google Scholar 

  87. Sumida K, Ubara Y, Hoshino J, et al. Once-weekly teriparatide in hemodialysis patients with hypoparathyroidism and low bone mass: a prospective study. Osteoporos Int. 2016;27:1441–50.

    Article  CAS  PubMed  Google Scholar 

  88. Hattersley G, Dean T, Corbin BA, Bahar H, Gardella TJ. Binding selectivity of abaloparatide for PTH-type-1-receptor conformations and effects on downstream signaling. Endocrinology. 2016;157:141–9.

    Article  CAS  PubMed  Google Scholar 

  89. Bahar H, Gallacher K, Downall J, Nelson CA, Shomali M, Hattersley G. Six weeks of daily abaloparatide treatment increased vertebral and femoral bone mineral density, microarchitecture and strength in ovariectomized osteopenic rats. Calcif Tissue Int. 2016;99:489–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Varela A, Chouinard L, Lesage E, Smith SY, Hattersley G. One year of abaloparatide, a selective activator of the PTH1 receptor, increased bone formation and bone mass in osteopenic ovariectomized rats without increasing bone resorption. J Bone Miner Res. 2017;32:24–33.

    Article  CAS  PubMed  Google Scholar 

  91. Doyle N, Varela A, Haile S, et al. Abaloparatide, a novel PTH receptor agonist, increased bone mass and strength in ovariectomized cynomolgus monkeys by increasing bone formation without increasing bone resorption. Osteoporos Int. 2018;29:685–97.

    Article  CAS  PubMed  Google Scholar 

  92. Leder BZ, O'Dea LS, Zanchetta JR, et al. Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2015;100:697–706.

    Article  CAS  PubMed  Google Scholar 

  93. Miller PD, Hattersley G, Riis BJ, et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016;316:722–33.

    Article  CAS  PubMed  Google Scholar 

  94. Moreira C, Fitzpatrick LA, Wang Y, Recker RR. Effects of abaloparatide-SC (BA058) on bone histology and histomorphometry: the ACTIVE phase 3 trial. Bone. 2016.

  95. Adami G, Orsolini G, Adami S, et al. Effects of TNF inhibitors on parathyroid hormone and Wnt signaling antagonists in rheumatoid arthritis. Calcif Tissue Int. 2016;99:360–4.

    Article  CAS  PubMed  Google Scholar 

  96. Briot K, Rouanet S, Schaeverbeke T, et al. The effect of tocilizumab on bone mineral density, serum levels of Dickkopf-1 and bone remodeling markers in patients with rheumatoid arthritis. Joint, bone, spine : revue du rhumatisme. 2015;82:109–15.

    Article  CAS  Google Scholar 

  97. McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370:412–20.

    Article  CAS  PubMed  Google Scholar 

  98. Saag KG, Petersen J, Brandi ML, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med. 2017.

  99. Cosman F, Crittenden DB, Adachi JD, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016;375:1532–43.

    Article  CAS  PubMed  Google Scholar 

  100. Langdahl BL, Libanati C, Crittenden DB, et al. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet. 2017.

  101. Eisman JA, Bone HG, Hosking DJ, et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res. 2011;26:242–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Nickolas.

Ethics declarations

Conflict of Interest

Thomas Nickolas reports grant support and person fees from Amgen and is on the Scientific Advisory Board.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Kidney and Bone

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairallah, P., Nickolas, T.L. Updates in CKD-Associated Osteoporosis. Curr Osteoporos Rep 16, 712–723 (2018). https://doi.org/10.1007/s11914-018-0491-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-018-0491-3

Keywords

Navigation