Skip to main content

Advertisement

Log in

The Role of Oncolytic Viruses in the Treatment of Melanoma

  • Melanoma (RJ Sullivan, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

A Correction to this article was published on 13 November 2018

This article has been updated

Abstract

Purpose of Review

Oncolytic virotherapy is a new approach to the treatment of cancer and its success in the treatment of melanoma represents a breakthrough in cancer therapeutics. This paper provides a review of the current literature on the use of oncolytic viruses (OVs) in the treatment of melanoma.

Recent Findings

Talimogene laherparepvec (T-VEC) is the first OV approved for the treatment of melanoma and presents new challenges as it enters the clinical setting. Several other OVs are at various stages of clinical and pre-clinical development for the treatment of melanoma. Reports from phase Ib-III clinical trials combining T-VEC with checkpoint blockade are encouraging and demonstrate potential added benefit of combination immunotherapy.

Summary

OVs have recently emerged as a standard treatment option for patients with advanced melanoma. Several OVs and therapeutic combinations are in development. Immunooncolytic virotherapy combined with immune checkpoint inhibitors is promising for the treatment of advanced melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 13 November 2018

    A correction was made to a sentence in the original article to provide additional clarification in the “Other Oncolytic Viruses” section.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fountzilas C, Patel S, Mahalingam D. Review: oncolytic virotherapy, updates and future directions. Oncotarget. 2017;8(60):102617–39.

    Article  Google Scholar 

  2. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science. 1991;252(5007):854–6.

    Article  CAS  Google Scholar 

  3. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9):642–62.

    Article  CAS  Google Scholar 

  4. Maroun J, Munoz-Alia M, Ammayappan A, Schulze A, Peng KW, Russell S. Designing and building oncolytic viruses. Futur Virol. 2017;12(4):193–213.

    Article  CAS  Google Scholar 

  5. Yu Z, Chan MK, O-charoenrat P, Eisenberg DP, Shah JP, Singh B, et al. Enhanced nectin-1 expression and herpes oncolytic sensitivity in highly migratory and invasive carcinoma. Clin Cancer Res. 2005;11(13):4889–97.

    Article  CAS  Google Scholar 

  6. Hammond AL, Plemper RK, Zhang J, Schneider U, Russell SJ, Cattaneo R. Single-chain antibody displayed on a recombinant measles virus confers entry through the tumor-associated carcinoembryonic antigen. J Virol. 2001;75(5):2087–96.

    Article  CAS  Google Scholar 

  7. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25:267–96.

    Article  CAS  Google Scholar 

  8. Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 2018;9(2):115.

    Article  Google Scholar 

  9. Mansour M, Palese P, Zamarin D. Oncolytic specificity of Newcastle disease virus is mediated by selectivity for apoptosis-resistant cells. J Virol. 2011;85(12):6015–23.

    Article  CAS  Google Scholar 

  10. Small EJ, Carducci MA, Burke JM, Rodriguez R, Fong L, van Ummersen L, et al. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol Ther. 2006;14(1):107–17.

    Article  CAS  Google Scholar 

  11. Guo ZS, Liu Z, Bartlett DL. Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front Oncol. 2014;4:74.

    PubMed  PubMed Central  Google Scholar 

  12. Burrows FJ, Gore M, Smiley WR, Kanemitsu MY, Jolly DJ, Read SB, et al. Purified herpes simplex virus thymidine kinase retroviral particles: III. Characterization of bystander killing mechanisms in transfected tumor cells. Cancer Gene Ther. 2002;9(1):87–95.

    Article  CAS  Google Scholar 

  13. Rubartelli A, Lotze MT. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 2007;28(10):429–36.

    Article  CAS  Google Scholar 

  14. Kaufman HL, Amatruda T, Reid T, Gonzalez R, Glaspy J, Whitman E, et al. Systemic versus local responses in melanoma patients treated with talimogene laherparepvec from a multi-institutional phase II study. J Immunother Cancer. 2016;4:12.

    Article  Google Scholar 

  15. Prestwich RJ, Errington F, Diaz RM, Pandha HS, Harrington KJ, Melcher AA, et al. The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum Gene Ther. 2009;20(10):1119–32.

    Article  CAS  Google Scholar 

  16. de Vries CR, Kaufman HL, Lattime EC. Oncolytic viruses: focusing on the tumor microenvironment. Cancer Gene Ther. 2015;22(4):169–71.

    Article  Google Scholar 

  17. Guedan S, Rojas JJ, Gros A, Mercade E, Cascallo M, Alemany R. Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther. 2010;18(7):1275–83.

    Article  CAS  Google Scholar 

  18. Li H, Haviv YS, Derdeyn CA, Lam J, Coolidge C, Hunter E, et al. Human immunodeficiency virus type 1-mediated syncytium formation is compatible with adenovirus replication and facilitates efficient dispersion of viral gene products and de novo-synthesized virus particles. Hum Gene Ther. 2001;12(18):2155–65.

    Article  CAS  Google Scholar 

  19. Toda M, Martuza RL, Rabkin SD. Tumor growth inhibition by intratumoral inoculation of defective herpes simplex virus vectors expressing granulocyte-macrophage colony-stimulating factor. Mol Ther. 2000;2(4):324–9.

    Article  CAS  Google Scholar 

  20. Mohit E, Rafati S. Chemokine-based immunotherapy: delivery systems and combination therapies. Immunotherapy. 2012;4(8):807–40.

    Article  CAS  Google Scholar 

  21. Bossow S, Grossardt C, Temme A, Leber MF, Sawall S, Rieber EP, et al. Armed and targeted measles virus for chemovirotherapy of pancreatic cancer. Cancer Gene Ther. 2011;18(8):598–608.

    Article  CAS  Google Scholar 

  22. Dharmadhikari N, Mehnert JM, Kaufman HL. Oncolytic virus immunotherapy for melanoma. Curr Treat Options in Oncol. 2015;16(3):326.

    Article  Google Scholar 

  23. Ottolino-Perry K, Diallo JS, Lichty BD, Bell JC, McCart JA. Intelligent design: combination therapy with oncolytic viruses. Mol Ther. 2010;18(2):251–63.

    Article  CAS  Google Scholar 

  24. Liu BL, Robinson M, Han ZQ, Branston RH, English C, Reay P, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003;10(4):292–303.

    Article  CAS  Google Scholar 

  25. Brown SM, MacLean AR, Aitken JD, Harland J. ICP34.5 influences herpes simplex virus type 1 maturation and egress from infected cells in vitro. J Gen Virol. 1994;75(Pt 12):3679–86.

    Article  CAS  Google Scholar 

  26. He B, Chou J, Liebermann DA, Hoffman B, Roizman B. The carboxyl terminus of the murine MyD116 gene substitutes for the corresponding domain of the gamma(1)34.5 gene of herpes simplex virus to preclude the premature shutoff of total protein synthesis in infected human cells. J Virol. 1996;70(1):84–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fruh K, Ahn K, Djaballah H, Sempe P, van Endert PM, Tampe R, et al. A viral inhibitor of peptide transporters for antigen presentation. Nature. 1995;375(6530):415–8.

    Article  CAS  Google Scholar 

  28. York IA, Roop C, Andrews DW, Riddell SR, Graham FL, Johnson DC. A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell. 1994;77(4):525–35.

    Article  CAS  Google Scholar 

  29. van de Laar L, Coffer PJ, Woltman AM. Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood. 2012;119(15):3383–93.

    Article  Google Scholar 

  30. Hu JC, Coffin RS, Davis CJ, Graham NJ, Groves N, Guest PJ, et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res. 2006;12(22):6737–47.

    Article  CAS  Google Scholar 

  31. Senzer NN, Kaufman HL, Amatruda T, Nemunaitis M, Reid T, Daniels G, et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol. 2009;27(34):5763–71.

    Article  CAS  Google Scholar 

  32. Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-Schulze S. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol. 2010;17(3):718–30.

    Article  Google Scholar 

  33. • Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8. The OPTiM phase III clinical trial, comparing treatment with T-VEC to GM-CSF, ultimately led to the FDA approval of the use of T-VEC for the treatment of advanced melanoma. 436 patients with unresected stage IIIB to IV melanoma were randomized. DRR was 16.3% for patients treated with T-VEC, as opposed to 2.1% for patients treated with GM-CSF.

    Article  CAS  Google Scholar 

  34. • Puzanov I, Milhem MM, Minor D, Hamid O, Li A, Chen L, et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol. 2016;34(22):2619–26. This phase Ib trial reported that combining T-VEC and ipilimumab was safe and effective in patients with stage IIIB-IVM1c melanoma. There were G3/4 AEs in 26.3% of patients and no DLTs. ORR was 50%, OS was 67%, and 18-month PFS was 50%.

    Article  CAS  Google Scholar 

  35. •• Chesney J, Puzanov I, Collichio F, Singh P, Milhem MM, Glaspy J, et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus Ipilimumab alone in patients with advanced, Unresectable melanoma. J Clin Oncol. 2017;36:1658–67. https://doi.org/10.1200/JCO.2017.73.7379. This is a phase II randomized trial of combined T-VEC and ipilimumab in unresectable stage IIIB-IV melanoma. The study met its primary endpoint. The ORR was significantly higher in patients receiving combination therapy (39%), relative to patients receiving ipilimumab treatment alone (18%).

    Article  PubMed  PubMed Central  Google Scholar 

  36. • Long GV, Dummer R, Ribas A, Puzanov I, VanderWalde A, Andtbacka RHI, et al. Efficacy analysis of MASTERKEY-265 phase 1b study of talimogene laherparepvec (T-VEC) and pembrolizumab (pembro) for unresectable stage IIIB-IV melanoma. J Clin Oncol. 2016;34(15):9568. This abstract reported the results from the phase Ib/III clinical trial evaluating the efficacy, safety, and tolerability of combining T-VEC and pembrolizumab in patients with unresectable stage IIIB-IV melanoma. There is an ongoing phase III clinical trial.

    Article  Google Scholar 

  37. •• Pembrolizumab With or Without Talimogene Laherparepvec or Talimogene Laherparepvec Placebo in Unresected Melanoma (KEYNOTE-034) [Internet]. 2014. Available from: https://clinicaltrials.gov/ct2/show/NCT02263508. This is an ongoing double-blind randomized phase III clinical trial comparing the efficacy of T-VEC + pembrolizumab to pembrolizumab + placebo in stage IIIB-IVM1c melanoma. Awaiting results.

  38. Andtbacka RHI, Chastain M, Li A, Shilkrut M, Ross MI. Phase 2, multicenter, randomized, open-label trial assessing efficacy and safety of talimogene laherparepvec (T-VEC) neoadjuvant treatment (tx) plus surgery vs surgery for resectable stage IIIB/C and IVM1a melanoma (MEL). J Clin Oncol. 2015;33(15):TPS9094-TPS.

    Google Scholar 

  39. Orloff M. Spotlight on talimogene laherparepvec for the treatment of melanoma lesions in the skin and lymph nodes. Oncolytic Virother. 2016;5:91–8.

    Article  CAS  Google Scholar 

  40. Randolph Hecht J, Pless M, Cubillo A, Calvo A, Raman S, Liu C, et al. Early safety from a phase 1, multicenter, open-label clinical trial of talimogene laherparepvec (T-VEC) injected into liver tumors. J Clin Oncol. 2018;36(4):438.

    Google Scholar 

  41. Hecht JR, Raman S, Sze DY, Lockhart AC, Moss RA, Liu K, et al. A phase I, multicenter, open-label trial to evaluate the safety of talimogene laherparepvec (T-VEC) injected into liver tumors. J Immunother Cancer. 2015;3:P180.

    Article  Google Scholar 

  42. • Trial to Evaluate the Safety ofTalimogene Laherparepvec Injected Into Liver Tumors Alone and in Combination With Systemic Pembrolizumab (MASTERKEY-318) [Internet]. 2015. Available from: https://clinicaltrials.gov/ct2/show/NCT02509507. There is a need for new methods of delivery of oncolytic viruses, especially to visceral sites of disease. This ongoing phase Ib study examines the safety of intrahepatic injection into liver tumors of T-VEC alone (under CT/US guidance), and of intrahepatic injection of T-VEC (under CT/US guidance) in combination with pembrolizumab.

  43. Ushijima Y, Luo C, Goshima F, Yamauchi Y, Kimura H, Nishiyama Y. Determination and analysis of the DNA sequence of highly attenuated herpes simplex virus type 1 mutant HF10, a potential oncolytic virus. Microbes Infect. 2007;9(2):142–9.

    Article  CAS  Google Scholar 

  44. Nishiyama Y, Kimura H, Daikoku T. Complementary lethal invasion of the central nervous system by nonneuroinvasive herpes simplex virus types 1 and 2. J Virol. 1991;65(8):4520–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sahin TT, Kasuya H, Nomura N, Shikano T, Yamamura K, Gewen T, et al. Impact of novel oncolytic virus HF10 on cellular components of the tumor microenviroment in patients with recurrent breast cancer. Cancer Gene Ther. 2012;19(4):229–37.

    Article  CAS  Google Scholar 

  46. Nakao A, Kasuya H, Sahin TT, Nomura N, Kanzaki A, Misawa M, et al. A phase I dose-escalation clinical trial of intraoperative direct intratumoral injection of HF10 oncolytic virus in non-resectable patients with advanced pancreatic cancer. Cancer Gene Ther. 2011;18(3):167–75.

    Article  CAS  Google Scholar 

  47. •• Andtbacka RHI, Ross MI, Agarwala SS, Taylor MH, Vetto JT, Neves RI, Daud A, Khong HT, Ungerleider RS, Tanaka M, Grossmann KF. Final results of a phase II multicenter trial of HF10, a replication-competent HSV-1 oncolytic virus, and ipilimumab combination treatment in patients with stage IIIB-IV unresectable or metastatic melanoma. J Clin Oncol. 2017;35(15). This phase II clinical trial evaluated the efficacy of combining ipilimumab with HF10 (an oncolytic virus) in stage IIIB-IV unresectable or metastatic melanoma. Reported median best ORR was 41% at 24 weeks, PFS was 19 months, and the median overall survival was 21.8 months.

    Article  Google Scholar 

  48. Watanabe D, Goshima F, Mori I, Tamada Y, Matsumoto Y, Nishiyama Y. Oncolytic virotherapy for malignant melanoma with herpes simplex virus type 1 mutant HF10. J Dermatol Sci. 2008;50(3):185–96.

    Article  CAS  Google Scholar 

  49. Takakuwa H, Goshima F, Nozawa N, Yoshikawa T, Kimata H, Nakao A, et al. Oncolytic viral therapy using a spontaneously generated herpes simplex virus type 1 variant for disseminated peritoneal tumor in immunocompetent mice. Arch Virol. 2003;148(4):813–25.

    Article  CAS  Google Scholar 

  50. Ferris RL. Phase I trial of intratumoral therapy using HF10, an oncolytic HSV-1, demonstrates safety in HSV+/HSV- patients with refractory and superficial cancers. J Clin Oncol. 2014;32.

  51. • Neoadjuvant Trial of Nivolumab in Combination With HF10 Oncolytic Viral Therapy in Resectable Stage IIIB, IIIC, IVM1a Melanoma [Internet]. 2017. Available from: https://clinicaltrials.gov/ct2/show/NCT03259425?term=HF-10&cond=melanoma&rank=3. Results from this ongoing phase II study evaluating the safety and efficacy of a treatment consisting of neoadjuvant HF10 used in combination with nivolumab in patients with stage IIIB, IIIC, and IVM1a melanoma will be of importance.

  52. Kageshita T, Yoshii A, Kimura T, Kuriya N, Ono T, Tsujisaki M, et al. Clinical relevance of ICAM-1 expression in primary lesions and serum of patients with malignant melanoma. Cancer Res. 1993;53(20):4927–32.

    CAS  PubMed  Google Scholar 

  53. Shafren DR, Au GG, Nguyen T, Newcombe NG, Haley ES, Beagley L, et al. Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clin Cancer Res. 2004;10(1 Pt 1):53–60.

    Article  CAS  Google Scholar 

  54. Au GG, Beagley LG, Haley ES, Barry RD, Shafren DR. Oncolysis of malignant human melanoma tumors by coxsackieviruses A13, A15 and A18. Virol J. 2011;8:22.

    Article  CAS  Google Scholar 

  55. A Study of Intratumoral CAVATAK™ in Patients With Stage IIIc and Stage IV Malignant Melanoma (VLA-007 CALM ) (CALM) [Internet]. 2010. Available from: https://clinicaltrials.gov/ct2/show/NCT01227551.

  56. Efficacy and Safety of Intratumoral CAVATAK in Patients With Stage IIIc or IV Malignant Melanoma to Extend Dosing to 48 Weeks [Internet]. 2012. Available from: https://clinicaltrials.gov/ct2/show/NCT01636882.

  57. • Curti B, Richards J, Hallmeyer S, et al. The MITCI (phase Ib) study: a novel immunotherapy combination of intralesional Coxsackievirus A21 and systemic ipilimumab in advanced melanoma patients with or without previous immune checkpoint therapy treatment. 2017 AACR Annual Meeting; April 2–5; Washington, DC. 2017. The preliminary results of this phase Ib clinical trial indicate that the novel combination of CVA21, a coxsackievirus, and ipilimumab is well-tolerated and leads to a durable response in patients with advanced melanoma. Preliminary ORR (50%) was greater than the published data on these agents as monotherapy in the treatment of advanced melanoma.

  58. • Kaufman HL, Spencer K, Mehnert J, et al. Phase Ib study of intratumoral oncolytic coxsackievirus A21 (CVA21) and pembrolizumab in subjects with advanced melanoma. Ann Oncol. 2016;27(suppl_6):1. The results from this ongoing phase Ib clinical study combining CVA21 and pembrolizumab therapy in patients with advanced melanoma will be of importance.

    Article  Google Scholar 

  59. Errington F, White CL, Twigger KR, Rose A, Scott K, Steele L, et al. Inflammatory tumour cell killing by oncolytic reovirus for the treatment of melanoma. Gene Ther. 2008;15(18):1257–70.

    Article  CAS  Google Scholar 

  60. Vidal L, Pandha HS, Yap TA, White CL, Twigger K, Vile RG, et al. A phase I study of intravenous oncolytic reovirus type 3 dearing in patients with advanced cancer. Clin Cancer Res. 2008;14(21):7127–37.

    Article  CAS  Google Scholar 

  61. Morris DG, Feng X, DiFrancesco LM, Fonseca K, Forsyth PA, Paterson AH, et al. REO-001: a phase I trial of percutaneous intralesional administration of reovirus type 3 dearing (Reolysin(R)) in patients with advanced solid tumors. Investig New Drugs. 2013;31(3):696–706.

    Article  CAS  Google Scholar 

  62. Galanis E, Markovic SN, Suman VJ, Nuovo GJ, Vile RG, Kottke TJ, et al. Phase II trial of intravenous administration of Reolysin((R)) (reovirus serotype-3-dearing strain) in patients with metastatic melanoma. Mol Ther. 2012;20(10):1998–2003.

    Article  CAS  Google Scholar 

  63. Mahalingam D, Fountzilas C, Moseley J, Noronha N, Tran H, Chakrabarty R, et al. A phase II study of REOLYSIN((R)) (pelareorep) in combination with carboplatin and paclitaxel for patients with advanced malignant melanoma. Cancer Chemother Pharmacol. 2017;79(4):697–703.

    Article  CAS  Google Scholar 

  64. Rao RD, Holtan SG, Ingle JN, Croghan GA, Kottschade LA, Creagan ET, et al. Combination of paclitaxel and carboplatin as second-line therapy for patients with metastatic melanoma. Cancer. 2006;106(2):375–82.

    Article  CAS  Google Scholar 

  65. Hodi FS, Soiffer RJ, Clark J, Finkelstein DM, Haluska FG. Phase II study of paclitaxel and carboplatin for malignant melanoma. Am J Clin Oncol. 2002;25(3):283–6.

    Article  Google Scholar 

  66. Glinkina LS, Bruvere R, Venskus DR, Garklava RR, Muceniece AJ. The cellular immunity indices of patients with malignant melanoma using the viral immunomodulator Rigvir. Vopr Onkol. 1992;38(5):540–7.

    CAS  PubMed  Google Scholar 

  67. Glinkina LS, Heisele OG, Garklava RR, Muceniece AJ. The humoral immunity indices of patients with malignant skin melanoma using the viral immunomodulator Rigvir. Vopr Onkol. 1992;38(5):534–40.

    CAS  PubMed  Google Scholar 

  68. Donina S, Strele I, Proboka G, Auzins J, Alberts P, Jonsson B, et al. Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res. 2015;25(5):421–6.

    Article  CAS  Google Scholar 

  69. Alberts P, Olmane E, Brokane L, Krastina Z, Romanovska M, Kupcs K, et al. Long-term treatment with the oncolytic ECHO-7 virus Rigvir of a melanoma stage IV M1c patient, a small cell lung cancer stage IIIA patient, and a histiocytic sarcoma stage IV patient-three case reports. APMIS. 2016;124(10):896–904.

    Article  CAS  Google Scholar 

  70. Kaufman HL, Deraffele G, Mitcham J, Moroziewicz D, Cohen SM, Hurst-Wicker KS, et al. Targeting the local tumor microenvironment with vaccinia virus expressing B7.1 for the treatment of melanoma. J Clin Invest. 2005;115(7):1903–12.

    Article  CAS  Google Scholar 

  71. Kaufman HL, Cohen S, Cheung K, DeRaffele G, Mitcham J, Moroziewicz D, et al. Local delivery of vaccinia virus expressing multiple costimulatory molecules for the treatment of established tumors. Hum Gene Ther. 2006;17(2):239–44.

    Article  CAS  Google Scholar 

  72. Adamina M, Rosenthal R, Weber WP, Frey DM, Viehl CT, Bolli M, et al. Intranodal immunization with a vaccinia virus encoding multiple antigenic epitopes and costimulatory molecules in metastatic melanoma. Mol Ther. 2010;18(3):651–9.

    Article  CAS  Google Scholar 

  73. Zajac P, Oertli D, Marti W, Adamina M, Bolli M, Guller U, et al. Phase I/II clinical trial of a nonreplicative vaccinia virus expressing multiple HLA-A0201-restricted tumor-associated epitopes and costimulatory molecules in metastatic melanoma patients. Hum Gene Ther. 2003;14(16):1497–510.

    Article  CAS  Google Scholar 

  74. Zamarin D, Vigil A, Kelly K, Garcia-Sastre A, Fong Y. Genetically engineered Newcastle disease virus for malignant melanoma therapy. Gene Ther. 2009;16(6):796–804.

    Article  CAS  Google Scholar 

  75. Niu Z, Bai F, Sun T, Tian H, Yu D, Yin J, et al. Recombinant Newcastle disease virus expressing IL15 demonstrates promising antitumor efficiency in melanoma model. Technol Cancer Res Treat. 2015;14(5):607–15.

    Article  CAS  Google Scholar 

  76. Pecora AL, Rizvi N, Cohen GI, Meropol NJ, Sterman D, Marshall JL, et al. Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol. 2002;20(9):2251–66.

    Article  CAS  Google Scholar 

  77. Linette GP, Hamid O, Whitman ED, Nemunaitis JJ, Chesney J, Agarwala SS, Starodub A, Barrett JA, Marsh A, Martell LA, Cho A, Reed TD, Youssoufian H, Vergara-Silva A. A phase I open-label study of Αd-RTS-hIL-12, an adenoviral vector engineered to express hIL-12 under the control of an oral activator ligand, in subjects with unresectable stage III/IV melanoma. J Clin Oncol. 2013;31.

  78. Bramante S, Kaufmann JK, Veckman V, Liikanen I, Nettelbeck DM, Hemminki O, et al. Treatment of melanoma with a serotype 5/3 chimeric oncolytic adenovirus coding for GM-CSF: results in vitro, in rodents and in humans. Int J Cancer. 2015;137(7):1775–83.

    Article  CAS  Google Scholar 

  79. Shen BH, Hermiston TW. Effect of hypoxia on Ad5 infection, transgene expression and replication. Gene Ther. 2005;12(11):902–10.

    Article  CAS  Google Scholar 

  80. Breitbach CJ, Lichty BD, Bell JC. Oncolytic viruses: therapeutics with an identity crisis. EBioMedicine. 2016;9:31–6.

    Article  Google Scholar 

  81. Fulci G, Dmitrieva N, Gianni D, Fontana EJ, Pan X, Lu Y, et al. Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Res. 2007;67(19):9398–406.

    Article  CAS  Google Scholar 

  82. Fulci G, Breymann L, Gianni D, Kurozomi K, Rhee SS, Yu J, et al. Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc Natl Acad Sci U S A. 2006;103(34):12873–8.

    Article  CAS  Google Scholar 

  83. Arulanandam R, Batenchuk C, Angarita FA, Ottolino-Perry K, Cousineau S, Mottashed A, et al. VEGF-mediated induction of PRD1-BF1/Blimp1 expression sensitizes tumor vasculature to oncolytic virus infection. Cancer Cell. 2015;28(2):210–24.

    Article  CAS  Google Scholar 

  84. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406.

    Article  CAS  Google Scholar 

  85. Coyne CB, Bergelson JM. CAR: a virus receptor within the tight junction. Adv Drug Deliv Rev. 2005;57(6):869–82.

    Article  CAS  Google Scholar 

  86. Bommareddy PK, Silk AW, Kaufman HL. Intratumoral approaches for the treatment of melanoma. Cancer J. 2017;23(1):40–7.

    Article  Google Scholar 

  87. Bayan C, Gartrell R, Lopez AT, Pradhan J, Chen C, Niedt G, et al. Distinguishing melanophages from melanoma in metastatic melanoma treated with T-VEC: a clinical application of quantitative multiplex immunofluorescence. J Investig Dermatol. 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne M. Saenger.

Ethics declarations

Conflict of Interest

Claire-Audrey Y. Bayan declares that she has no conflict of interest.

Adriana T. Lopez declares that she has no conflict of interest.

Robyn D. Gartrell has received compensation from PerkinElmer for service as a consultant, and (with Yvonne M. Saenger, licensed to Columbia University and Amgen) has a patent pending on “Method of Treating Cancer Using Combination BRAF Inhibitor, Talimogene Laherparepvec, and Immune Checkpoint Inhibitor” (U.S. Provisional Application No. 62/410,206).

Kimberly M. Komatsubara declares that she has no conflict of interest.

Margaret Bogardus declares that she has no conflict of interest.

Nisha Rao declares that she has no conflict of interest.

Cynthia Chen declares that she has no conflict of interest.

Thomas D. Hart declares that he has no conflict of interest.

Thomas Enzler declares that he has no conflict of interest.

Emanuelle M. Rizk declares that she has no conflict of interest.

Jaya Sarin Pradhan declares that she has no conflict of interest.

Douglas K. Marks has received compensation from Takeda for service on an advisory board.

Larisa J. Geskin declares that she has no conflict of interest.

Yvonne M. Saenger has received support through research grants from Amgen to study their oncolytic virus, talimogene laherparepvec; however, Amgen did not support the writing of this article. Along with Robyn D. Gartrell (licensed to Columbia University and Amgen), also has a patent pending on “Method of Treating Cancer Using Combination BRAF Inhibitor, Talimogene Laherparepvec, and Immune Checkpoint Inhibitor” (U.S. Provisional Application No. 62/410,206).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Melanoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayan, CA.Y., Lopez, A.T., Gartrell, R.D. et al. The Role of Oncolytic Viruses in the Treatment of Melanoma. Curr Oncol Rep 20, 80 (2018). https://doi.org/10.1007/s11912-018-0729-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-018-0729-3

Keywords

Navigation