Skip to main content

Advertisement

Log in

Impact of Molecular Biology Studies on the Understanding of Brain Tumors in Childhood

  • Pediatric Oncology (S Epelman, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Pediatric brain tumors are the second most common form of childhood malignancy. Brain tumors are a very heterogenous group of tumors and the pathogenesis of many of these tumors is yet to be clearly elucidated. Current diagnostic tools include histopathology and immunohistochemistry, but classification based on these means has significant limitations. As our understanding of the molecular biology of individual tumors continues to increase it has led to the identification of reliable and increasingly available molecular biomarkers. Molecular techniques are likely to complement current standard means of investigation and help not only overcome diagnostic challenges but may also result in better disease classification and risk stratification, leading to more personalized therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. CBTRUS. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2004-2007. Source: Central Brain Tumor Registry of the United States, Hinsdale, IL website: wwwcbtrusorg (2011).

  2. Armstrong GT, Stovall M, Robison LL. Long-term effects of radiation exposure among adult survivors of childhood cancer: results from the childhood cancer survivor study. Radiat Res. 2010;174(6):840–50.

    Article  PubMed  CAS  Google Scholar 

  3. Turner CD, Rey-Casserly C, Liptak CC, et al. Late effects of therapy for pediatric brain tumor survivors. J Child Neurol. 2009;24(11):1455–63.

    Article  PubMed  Google Scholar 

  4. Crawford JR, MacDonald TJ, Packer RJ. Medulloblastoma in childhood: new biological advances. Lancet Neurol. 2007;6(12):1073–85.

    Article  PubMed  CAS  Google Scholar 

  5. Packer RJ, Rood BR, MacDonald TJ. Medulloblastoma: present concepts of stratification into risk groups. Pediatr Neurosurg. 2003;39(2):60–7.

    Article  PubMed  Google Scholar 

  6. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.

    Article  PubMed  Google Scholar 

  7. Leary SE, Zhou T, Holmes E, et al. Histology predicts a favorable outcome in young children with desmoplastic medulloblastoma: a report from the children’s oncology group. Cancer. 2011;117(14):3262–7.

    Article  PubMed  Google Scholar 

  8. Rutkowski S, von Hoff K, Emser A, et al. Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. J Clin Oncol. 2010;28(33):4961–8.

    Article  PubMed  Google Scholar 

  9. von Hoff K, Hartmann W, von Bueren AO, et al. Large cell/anaplastic medulloblastoma: outcome according to myc status, histopathological, and clinical risk factors. Pediatr Blood Cancer. 2010;54(3):369–76.

    Article  Google Scholar 

  10. Giangaspero F, Wellek S, Masuoka J, et al. Stratification of medulloblastoma on the basis of histopathological grading. Acta Neuropathol. 2006;112(1):5–12.

    Article  PubMed  Google Scholar 

  11. Lamont JM, McManamy CS, Pearson AD, et al. Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clinical cancer research: an official journal of the American Association for Cancer Research. Clin Cancer Res. 2004;10(16):5482–93.

    Article  PubMed  CAS  Google Scholar 

  12. Pan E, Pellarin M, Holmes E, et al. Isochromosome 17q is a negative prognostic factor in poor-risk childhood medulloblastoma patients. Clinical cancer research: an official journal of the American Association for Cancer Research. Clin Cancer Res. 2005;11(13):4733–40.

    Article  PubMed  CAS  Google Scholar 

  13. Pfister S, Remke M, Benner A, et al. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. J Clin Oncol. 2009;27(10):1627–36.

    Article  PubMed  Google Scholar 

  14. Northcott PA, Nakahara Y, Wu X, et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet. 2009;41(4):465–72.

    Article  PubMed  CAS  Google Scholar 

  15. Stearns D, Chaudhry A, Abel TW, et al. c-myc overexpression causes anaplasia in medulloblastoma. Cancer Res. 2006;66(2):673–81.

    Article  PubMed  CAS  Google Scholar 

  16. Eberhart CG, Kratz J, Wang Y, et al. Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. J Neuropathol Exp Neurol. 2004;63(5):441–9.

    PubMed  CAS  Google Scholar 

  17. Pfaff E, Remke M, Sturm D, et al. TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. J Clin Oncol. 2010;28(35):5188–96.

    Article  PubMed  CAS  Google Scholar 

  18. Mendrzyk F, Radlwimmer B, Joos S, et al. Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. J Clin Oncol. 2005;23(34):8853–62.

    Article  PubMed  CAS  Google Scholar 

  19. Eberhart CG, Kratz JE, Schuster A, et al. Comparative genomic hybridization detects an increased number of chromosomal alterations in large cell/anaplastic medulloblastomas. Brain Pathol. 2002;12(1):36–44.

    Article  PubMed  CAS  Google Scholar 

  20. Di C, Liao S, Adamson DC, et al. Identification of OTX2 as a medulloblastoma oncogene whose product can be targeted by all-trans retinoic acid. Cancer Res. 2005;65(3):919–24.

    PubMed  CAS  Google Scholar 

  21. Crawford JR, Rood BR, Rossi CT, et al. Medulloblastoma associated with novel PTCH mutation as primary manifestation of Gorlin syndrome. Neurology. 2009;72(18):1618.

    Article  PubMed  Google Scholar 

  22. •• Ellison DW, Dalton J, Kocak M, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta neuropathologica 2011:121(3):381-396. This study describes the clinicopathologic data of the SHH, WNT, and SHH/WNT molecular subgroups of medulloblastoma based on a clinical trial cohort.

  23. Zurawel RH, Allen C, Chiappa S, et al. Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosomes Cancer. 2000;27(1):44–51.

    Article  PubMed  CAS  Google Scholar 

  24. McLaughlin MR, Gollin SM, Lese CM, et al. Medulloblastoma and glioblastoma multiforme in a patient with Turcot syndrome: a case report. Surg Neurol. 1998;49(3):295–301.

    Article  PubMed  CAS  Google Scholar 

  25. Dahmen RP, Koch A, Denkhaus D, et al. Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res. 2001;61(19):7039–43.

    PubMed  CAS  Google Scholar 

  26. McMahon AP, Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell. 1990;62(6):1073–85.

    Article  PubMed  CAS  Google Scholar 

  27. Hayden MA, Akong K, Peifer M. Novel roles for APC family members and Wingless/Wnt signaling during Drosophila brain development. Dev Biol. 2007;305(1):358–76.

    Article  PubMed  CAS  Google Scholar 

  28. • Fattet S, Haberler C, Legoix P, et al. Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. The Journal of pathology 2009:218(1):86-94. CTNNB1-mutated tumours represent a distinct molecular subgroup of medulloblastomas with favourable outcome.

  29. Gibson P, Tong Y, Robinson G, et al. Subtypes of medulloblastoma have distinct developmental origins. Nature. 2010;468(7327):1095–9.

    Article  PubMed  CAS  Google Scholar 

  30. Thompson MC, Fuller C, Hogg TL, et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. J Clin Oncol. 2006;24(12):1924–31.

    Article  PubMed  CAS  Google Scholar 

  31. Yokota N, Nishizawa S, Ohta S, et al. Role of Wnt pathway in medulloblastoma oncogenesis. International journal of cancer Journal international du cancer. Int J Cancer. 2002;101(2):198–201.

    Article  PubMed  CAS  Google Scholar 

  32. Ellison DW, Onilude OE, Lindsey JC, et al. beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. J Clin Oncol. 2005;23(31):7951–7.

    Article  PubMed  CAS  Google Scholar 

  33. de Bont JM, Packer RJ, Michiels EM, et al. Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective. Neuro Oncol. 2008;10(6):1040–60.

    Article  PubMed  Google Scholar 

  34. Xu P, Pu PY, Kang CS, et al. Differential expression of Notch1 and Notch2 in astrocytoma and medulloblastoma. Zhonghua bing li xue za zhi Chinese journal of pathology. 2008;37(7):450–3.

    PubMed  CAS  Google Scholar 

  35. Shih Ie M, Wang TL. Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res. 2007;67(5):1879–82.

    Article  PubMed  Google Scholar 

  36. Gilbertson RJ, Pearson AD, Perry RH, et al. Prognostic significance of the c-erbB-2 oncogene product in childhood medulloblastoma. Br J Cancer. 1995;71(3):473–7.

    Article  PubMed  CAS  Google Scholar 

  37. Gilbertson RJ, Clifford SC. PDGFRB is overexpressed in metastatic medulloblastoma. Nat Genet. 2003;35(3):197–8.

    Article  PubMed  CAS  Google Scholar 

  38. Grotzer MA, Janss AJ, Phillips PC, et al. Neurotrophin receptor TrkC predicts good clinical outcome in medulloblastoma and other primitive neuroectodermal brain tumors. Klin Padiatr. 2000;212(4):196–9.

    Article  PubMed  CAS  Google Scholar 

  39. •• Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma comprises four distinct molecular variants. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2011:29(11):1408-1414. Four molecular subgroups of medulloblastoma were identified using an integrated genomic approach and the use of immunohistochemistry for classifying the four subgroups has been described.

  40. Kool M, Koster J, Bunt J, et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One. 2008;3(8):e3088.

    Article  PubMed  Google Scholar 

  41. Cho YJ, Tsherniak A, Tamayo P, et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. J Clin Oncol. 2011;29(11):1424–30.

    Article  PubMed  Google Scholar 

  42. Curran EK, Sainani KL, Le GM, et al. Gender affects survival for medulloblastoma only in older children and adults: a study from the Surveillance Epidemiology and End Results Registry. Pediatr Blood Cancer. 2009;52(1):60–4.

    Article  PubMed  Google Scholar 

  43. Biegel JA. Molecular genetics of atypical teratoid/rhabdoid tumor. Neurosurg Focus. 2006;20(1):E11.

    Article  PubMed  Google Scholar 

  44. Rorke LB, Packer RJ, Biegel JA. Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: definition of an entity. J Neurosurg. 1996;85(1):56–65.

    Article  PubMed  CAS  Google Scholar 

  45. Biegel JA, Kalpana G, Knudsen ES, et al. The role of INI1 and the SWI/SNF complex in the development of rhabdoid tumors: meeting summary from the workshop on childhood atypical teratoid/rhabdoid tumors. Cancer Res. 2002;62(1):323–8.

    PubMed  CAS  Google Scholar 

  46. Versteege I, Sevenet N, Lange J, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394(6689):203–6.

    Article  PubMed  CAS  Google Scholar 

  47. Biegel JA, Tan L, Zhang F, et al. Alterations of the hSNF5/INI1 gene in central nervous system atypical teratoid/rhabdoid tumors and renal and extrarenal rhabdoid tumors. Clinical cancer research: an official journal of the American Association for Cancer Research. Clin Cancer Res. 2002;8(11):3461–7.

    PubMed  CAS  Google Scholar 

  48. Janson K, Nedzi LA, David O, et al. Predisposition to atypical teratoid/rhabdoid tumor due to an inherited INI1 mutation. Pediatr Blood Cancer. 2006;47(3):279–84.

    Article  PubMed  Google Scholar 

  49. Biegel JA, Fogelgren B, Wainwright LM, et al. Germline INI1 mutation in a patient with a central nervous system atypical teratoid tumor and renal rhabdoid tumor. Genes Chromosomes Cancer. 2000;28(1):31–7.

    Article  PubMed  CAS  Google Scholar 

  50. Judkins AR, Burger PC, Hamilton RL, et al. INI1 protein expression distinguishes atypical teratoid/rhabdoid tumor from choroid plexus carcinoma. J Neuropathol Exp Neurol. 2005;64(5):391–7.

    PubMed  CAS  Google Scholar 

  51. Haberler C, Laggner U, Slavc I, et al. Immunohistochemical analysis of INI1 protein in malignant pediatric CNS tumors: Lack of INI1 in atypical teratoid/rhabdoid tumors and in a fraction of primitive neuroectodermal tumors without rhabdoid phenotype. Am J Surg Pathol. 2006;30(11):1462–8.

    Article  PubMed  Google Scholar 

  52. Hasselblatt M, Gesk S, Oyen F, et al. Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. Am J Surg Pathol. 2011;35(6):933–5.

    Article  PubMed  Google Scholar 

  53. Schneppenheim R, Fruhwald MC, Gesk S, et al. Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am J Hum Genet. 2010;86(2):279–84.

    Article  PubMed  CAS  Google Scholar 

  54. Birks DK, Kleinschmidt-DeMasters BK, Donson AM, et al. Claudin 6 is a positive marker for atypical teratoid/rhabdoid tumors. Brain Pathol. 2010;20(1):140–50.

    Article  PubMed  CAS  Google Scholar 

  55. Gessi M, Giangaspero F, Lauriola L, et al. Embryonal tumors with abundant neuropil and true rosettes: a distinctive CNS primitive neuroectodermal tumor. Am J Surg Pathol. 2009;33(2):211–7.

    Article  PubMed  Google Scholar 

  56. Wang Y, Chu SG, Xiong J, et al. Embryonal tumor with abundant neuropil and true rosettes (ETANTR) with a focal amplification at chromosome 19q13.42 locus: further evidence of two new instances in China. Neuropathology : official journal of the Japanese Society of Neuropathology 2011.

  57. Pfister S, Remke M, Castoldi M, et al. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathol. 2009;117(4):457–64.

    Article  PubMed  CAS  Google Scholar 

  58. Korshunov A, Remke M, Gessi M, et al. Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathol. 2010;120(2):253–60.

    Article  PubMed  Google Scholar 

  59. Cheng Y, Pang JC, Ng HK, et al. Pilocytic astrocytomas do not show most of the genetic changes commonly seen in diffuse astrocytomas. Histopathology. 2000;37(5):437–44.

    Article  PubMed  CAS  Google Scholar 

  60. Sanoudou D, Tingby O, Ferguson-Smith MA, et al. Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br J Cancer. 2000;82(6):1218–22.

    Article  PubMed  CAS  Google Scholar 

  61. Pfister S, Janzarik WG, Remke M, et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest. 2008;118(5):1739–49.

    Article  PubMed  CAS  Google Scholar 

  62. Sievert AJ, Jackson EM, Gai X, et al. Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol. 2009;19(3):449–58.

    Article  PubMed  CAS  Google Scholar 

  63. •• Schindler G, Capper D, Meyer J, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta neuropathologica 2011:121(3):397-405. This study shows a high association of the BRAFV600E mutation in pleomorphic xanthoastrocytomas, gangliogliomas, and extra-cerebellar pilocytic astrocytomas. BRAFV600E mutation may play a role as a potential diagnostic marker and may pave the way for use of targeted therapeutics in future clinical trials with these tumors.

  64. Cin H, Meyer C, Herr R, et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol. 2011;121(6):763–74.

    Article  PubMed  CAS  Google Scholar 

  65. Viana-Pereira M, Lopes JM, Little S, et al. Analysis of EGFR overexpression, EGFR gene amplification and the EGFRvIII mutation in Portuguese high-grade gliomas. Anticancer research 2008:28(2A):913-920.

    Google Scholar 

  66. Liang ML, Ma J, Ho M, et al. Tyrosine kinase expression in pediatric high grade astrocytoma. J Neurooncol. 2008;87(3):247–53.

    Article  PubMed  Google Scholar 

  67. Bax DA, Gaspar N, Little SE, et al. EGFRvIII deletion mutations in pediatric high-grade glioma and response to targeted therapy in pediatric glioma cell lines. Clinical cancer research: an official journal of the American Association for Cancer Research. Clin Cancer Res. 2009;15(18):5753–61.

    Article  PubMed  CAS  Google Scholar 

  68. Rood BR, MacDonald TJ. Pediatric high-grade glioma: molecular genetic clues for innovative therapeutic approaches. J Neurooncol. 2005;75(3):267–72.

    Article  PubMed  CAS  Google Scholar 

  69. Thorarinsdottir HK, Santi M, McCarter R, et al. Protein expression of platelet-derived growth factor receptor correlates with malignant histology and PTEN with survival in childhood gliomas. Clinical cancer research: an official journal of the American Association for Cancer Research. Clin Cancer Res. 2008;14(11):3386–94.

    Article  PubMed  CAS  Google Scholar 

  70. Nakamura M, Shimada K, Ishida E, et al. Molecular pathogenesis of pediatric astrocytic tumors. Neuro Oncol. 2007;9(2):113–23.

    Article  PubMed  CAS  Google Scholar 

  71. Broniscer A, Baker SJ, West AN, et al. Clinical and molecular characteristics of malignant transformation of low-grade glioma in children. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. J Clin Oncol. 2007;25(6):682–9.

    Article  PubMed  CAS  Google Scholar 

  72. Pollack IF, Hamilton RL, James CD, et al. Rarity of PTEN deletions and EGFR amplification in malignant gliomas of childhood: results from the Children’s Cancer Group 945 cohort. J Neurosurg. 2006;105(5 Suppl):418–24.

    PubMed  Google Scholar 

  73. Paugh BS, Qu C, Jones C, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. J Clin Oncol. 2010;28(18):3061–8.

    Article  PubMed  Google Scholar 

  74. Antonelli M, Buttarelli FR, Arcella A, et al. Prognostic significance of histological grading, p53 status, YKL-40 expression, and IDH1 mutations in pediatric high-grade gliomas. J Neurooncol. 2010;99(2):209–15.

    Article  PubMed  CAS  Google Scholar 

  75. Fassan M, Tassone E, Onisto M, et al. MGMT promoter methylation in pediatric high-grade gliomas. Child's nervous system: ChNS: official journal of the International Society for Pediatric Neurosurgery. Childs Nerv Syst. 2011;27(1):7–8.

    Article  PubMed  Google Scholar 

  76. Lee JY, Park CK, Park SH, et al. MGMT promoter gene methylation in pediatric glioblastoma: analysis using MS-MLPA. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery 2011.

  77. Gilbertson RJ, Hill DA, Hernan R, et al. ERBB1 is amplified and overexpressed in high-grade diffusely infiltrative pediatric brain stem glioma. Clinical cancer research: an official journal of the American Association for Cancer Research. Clin Cancer Res. 2003;9(10 Pt 1):3620–4.

    PubMed  CAS  Google Scholar 

  78. Zarghooni M, Bartels U, Lee E, et al. Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. J Clin Oncol. 2010;28(8):1337–44.

    Article  PubMed  CAS  Google Scholar 

  79. Joshi BH, Puri RA, Leland P, et al. Identification of interleukin-13 receptor alpha2 chain overexpression in situ in high-grade diffusely infiltrative pediatric brainstem glioma. Neuro Oncol. 2008;10(3):265–74.

    Article  PubMed  CAS  Google Scholar 

  80. Barrow J, Adamowicz-Brice M, Cartmill M, et al. Homozygous loss of ADAM3A revealed by genome-wide analysis of pediatric high-grade glioma and diffuse intrinsic pontine gliomas. Neuro Oncol. 2011;13(2):212–22.

    Article  PubMed  CAS  Google Scholar 

  81. Monje M, Mitra SS, Freret ME, et al. Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci USA. 2011;108(11):4453–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amulya A. Nageswara Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nageswara Rao, A.A., Packer, R.J. Impact of Molecular Biology Studies on the Understanding of Brain Tumors in Childhood. Curr Oncol Rep 14, 206–212 (2012). https://doi.org/10.1007/s11912-012-0214-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-012-0214-3

Keywords

Navigation