Skip to main content

Advertisement

Log in

New Developments in Targeted Therapy for Soft Tissue Sarcoma

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Soft tissue sarcomas (STS) are rare diseases, with an estimated 10,390 new cases in the United States in 2008. Unfortunately, only 50% are cured with surgical resection. The standard cytotoxic chemotherapeutic agents have not been successful in the treatment of metastatic disease. The standard single-agent chemotherapy for metastatic disease is doxorubicin, with only 20% to 25% response rates. The combination of doxorubicin with other agents, such as ifosfamide, has improved response rates, without any improvement in overall survival. New targeted therapies have shown some activity in STS; however, disease stabilization is seen more often than a true radiographic response. The combination of cytotoxic chemotherapy with more targeted and novel agents may be appropriate to improve outcome in these patients. The agents of interest in sarcomas at this time are multi-tyrosine kinase inhibitors, antiangiogenesis agents, inhibitors of mammalian target of rapamycin, hypoxia-activating prodrugs, insulin growth factor monoclonal antibodies, and tumor necrosis factor-related apoptosis-inducing ligand agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Demetri GD, von Mehren M, Blanke CD, et al.: Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002, 347:472–480.

    Article  CAS  PubMed  Google Scholar 

  2. Demetri GD, van Oosterom AT, Garrett CR, et al.: Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 2006, 368:1329–1338.

    Article  CAS  PubMed  Google Scholar 

  3. Vigil CE, Chiappori AA, Williams CA, et al.: Phase II study of sunitinib malate (SM) in subjects with metastatic and/or surgically unresectable non-GIST soft tissue sarcomas. J Clin Oncol 2008, 26:10535.

    Google Scholar 

  4. Koehan ML, Morgan JA, D’Adamo DR, et al.: Continuous daily dosing (CDD) of sunitinib (SU) in patients with metastatic soft tissue sarcomas (STS) other than GIST: results of a phase II trial. J Clin Oncol 2008, 26:10533.

    Google Scholar 

  5. Maki RG, Keohan ML, Undevia SD, et al.: Updated results of a phase II study of oral multi-kinase inhibitor sorafenib in sarcomas, CTEP study #7060. J Clin Oncol 2008, 26:10531.

    Google Scholar 

  6. Ryan CW, von Mehren M, Rankin CJ, et al.: Phase II intergroup study of sorafenib (S) in advanced soft tissue sarcoma (STS): SWOG 0505. J Clin Oncol 2008, 26:10532.

    Google Scholar 

  7. Jiang BH, Agani F, Passaniti A, Semenza GL: V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: Involvement of HIF-1 in tumor progression. Cancer Res 1997, 57:5328–5335.

    CAS  PubMed  Google Scholar 

  8. Schenone S, Manetti F, Botta M: Src inhibitors and angiogenesis. Curr Pharm Design 2007, 13:2118–2128.

    Article  CAS  Google Scholar 

  9. Shor AC, Kescheman EA, Lee FY, et al.: Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on Src kinase for survival. Cancer Res 2007, 67:2800–2808.

    Article  CAS  PubMed  Google Scholar 

  10. Sleijfer S, Papai Z, Le Cesne A, et al.: Phase II study of pazopanib (GW786034) in patients (pts) with relapsed or refractory soft tissue sarcoma (STS): EORTC 62043. J Clin Oncol 2007, 25:10031.

    Google Scholar 

  11. Demetri GD, Casali PG, Blay JY, et al.: A phase I study of single-agent nilotinib or in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors. Clin Cancer Res 2009, 15:5910–5916.

    Article  CAS  PubMed  Google Scholar 

  12. Agulnik M, Okuno SH, von Mehren M, et al.: Bevacizumab for the treatment of angiosarcoma: An open label multicenter phase II study. CTOS Proceedings 2009, page 69:39250.

  13. D’Adamo DR, Anderson SE, Albritton K, et al.: Phase II study of doxorubicin and bevacizumab for patients with metastatic soft tissue sarcomas. J Clin Oncol 2005, 23:7135–7142.

    Article  PubMed  Google Scholar 

  14. Haddad PA, Skubitz KM: Combination of bevacizumab (A) and pegylated-doxorubicin (PLD) (PLD-A) in sarcomas (SAR). J Clin Oncol 2006, 20(Suppl 18):9556.

    Google Scholar 

  15. Hensley ML, Maki R, Venkatraman E, et al.: Gemcitabine and docetaxel in patients with unresectable leiomyosarcoma: Results of a phase II trial. J Clin Oncol 2002, 20:2824–2831.

    Article  CAS  PubMed  Google Scholar 

  16. Maki RG, Wathen JK, Patel SR, et al.: Randomized phase II study of gemcitabine and docetaxel compared to gemcitabine alone in patients with soft tissue sarcoma. J Clin Oncol 2007, 25:2755–2763.

    Article  CAS  PubMed  Google Scholar 

  17. • Verschraegen CF, Quinn R, Rabinowitz I, et al.: Phase I/II study of docetaxel (D), gemcitabine (G), and bevacizumab (B) in patients (pts) with advanced or recurrent soft tissue sarcoma (STS). J Clin Oncol 2008, 26(Suppl 15):10534. This is an important abstract in terms of dosing of gemcitabine and docetaxel, compared to standard. Both drugs are given every 2 weeks. Patient tolerance is great based on my experience.

    Google Scholar 

  18. Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003, 3:721–731.

    Article  CAS  PubMed  Google Scholar 

  19. Pouyssegur J, Dayan F, Mazur N, et al.: Hypoxia signaling in cancer and approaches to enforce tumor regression. Nat Rev Drug Discov 2006, 441:437–443.

    Article  CAS  Google Scholar 

  20. Faivre S, Kroemer G, Raymond E, et al.: Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006, 5:671–688.

    Article  CAS  PubMed  Google Scholar 

  21. Mita MM, Britten CD, Poplin E, et al.: Deforolimus trial 106: a phase I trial evaluating 7 regimens of oral deforolimus (AP23573, MK08669). J Clin Oncol 2008, 26(Suppl 15):3509.

    Google Scholar 

  22. Chawla SP, Tolcher AW, Staddon AP, et al.: Survival results with AP23573, a novel mTOR inhibitor, in patients with advanced soft tissue or bone sarcomas: update of phase II trial. J Clin Oncol 2007, 25(Suppl 18):10076.

    Google Scholar 

  23. Brizel DM, Scully SP, Harrelson JM, et al.: Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 1996, 56:941–943.

    CAS  PubMed  Google Scholar 

  24. Nordsmark M, Alsner J, Keller J, et al.: Hypoxia in human soft tissue sarcomas; adverse impact on survival and no association with p53 mutations. Br J Cancer 2001, 84:1070–1075.

    Article  CAS  PubMed  Google Scholar 

  25. • Wilson WR, Hickes KO, Pruijin FB, et al.: Targeting tumor hypoxia with prodrugs: challenges and opportunities. AACR/Education Book 2008, 293–301. This is a great review article for hypoxia-activating prodrugs.

  26. • Le QT, Kong C, Lavori PW, et al.: Expression and prognostic significance of a panel of tissue hypoxia markers in head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 2007, 69:167–175. This article begins to make us understand the hypoxia markers and how to select patients for hypoxia-activating agent.

    CAS  PubMed  Google Scholar 

  27. Sarantopoulos J, Tolcher AW, Wong A, et al.: Banoxantrone (AQ4N), tissue CYP 450 targeted prodrug: The results of a phase I study using an accelerated dose escalation. J Clin Oncol 2006, 24(Suppl 18):2011.

    Google Scholar 

  28. Ganjoo KN, Cranmer LD, Butrynski JE, et al.: Phase I/II study of TH-302 combined with doxorubicin in soft tissue sarcoma: Preliminary results. Proc CTOS 2009, 39226.

  29. Isakoff MS, Marina M: Anti-insulin growth factor receptor therapy in Ewing sarcoma. Med Rep 2009, 1:62.

    Google Scholar 

  30. Hermanto U, Zong CS, Wang LH: Inhibition of mitogen-activated protein kinase kinase selectively inhibits cell proliferation in human breast cancer cells displaying enhanced insulin-like growth factor 1 mediated mitogen activated protein kinase activation. Cell Growth Differ 2000, 11:654–655.

    Google Scholar 

  31. Xie Yuntao, Skytting B, Nilsson G, et al.: Expression of insulin-like growth factor-1 receptor in synovial sarcoma: association with an aggressive phenotype. Cancer Res 1999, 59:3588–3591.

    CAS  PubMed  Google Scholar 

  32. Ahlen J, Wejde J, Brosjo O, et al.: Insulin-like growth factor type 1 receptor expression correlates to good prognosis in highly malignant soft tissue sarcoma. Clin Cancer Res 2005, 11:206–216.

    CAS  PubMed  Google Scholar 

  33. Reiss K, D’Ambrosio C, Tu X, et al.: Inhibition of tumour growth by a dominant negative mutant of the insulin-like growth factor 1 receptor with a bystander effect. Clin Cancer Res 1998, 4:2647–2655.

    CAS  PubMed  Google Scholar 

  34. Olmos D, Postel-Vinay S, Molife LR, et al.: Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing’s sarcoma: A phase I expansion cohort study. Lancet Oncol 2010, 11:129–135.

    Article  CAS  PubMed  Google Scholar 

  35. Patel S, Pappo A, Crowley J, et al.: A SARC global collaborative phase II trial of R1507, a recombinant human monoclonal antibody to the insulin-like growth factor-a receptor (IGF 1R) in patients with recurrent or refractory sarcomas. J Clin Oncol 2009, 27(Suppl 15):10503.

    Google Scholar 

  36. Hotte SJ, Hirte HW, Chen EX, et al.: A phase I study of mapatumumab (fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies. Clin Cancer Res 2008, 14:3450–3455.

    Article  CAS  PubMed  Google Scholar 

  37. Leong S, Cohen RB, Gustafson DL, et al.: Mapatumumab, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies: Results of a phase I and pharmacokinetic study. J Clin Oncol 2009, 27:4413–4421.

    Article  CAS  PubMed  Google Scholar 

  38. Mom CH, Verweij J, Oldenhuis CNAM, et al.: Mapatumumab, a fully human agonistic monoclonal antibody that targets TRAIL-R1, in combination with gemcitabine and cisplatin: a phase I study. Clin Cancer Res 2009, 15:5584–5590.

    Article  CAS  PubMed  Google Scholar 

  39. Sikic BI, Wakelee HA, von Mehren M, et al.: A phase Ib study to assess the safety of lexatumumab, a human monoclonal antibody that activates TRAIL-R2, in combination with gemcitabine, pemetrexed, doxorubicin or FOLFIRI. J Clin Oncol 2007, 25(Suppl 18):14006.

    Google Scholar 

Download references

Disclosure

No potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen N. Ganjoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganjoo, K.N. New Developments in Targeted Therapy for Soft Tissue Sarcoma. Curr Oncol Rep 12, 261–265 (2010). https://doi.org/10.1007/s11912-010-0107-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-010-0107-2

Keywords

Navigation