Skip to main content

Advertisement

Log in

EEG Monitoring of the Epileptic Newborn

  • Pediatric Neurology (WE Kaufmann, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Although differentiating neonatal-onset epilepsies from acute symptomatic neonatal seizures has been increasingly recognized as crucial, existing guidelines, and recommendations on EEG monitoring are mainly based on acute symptomatic seizures, especially secondary to hypoxic-ischemic encephalopathy. We aimed to narratively review current knowledge on neonatal-onset epilepsies of genetic, metabolic, and structural non-acquired origin, with special emphasis on EEG features and monitoring.

Recent Findings

A wide range of rare conditions are increasingly described, reducing undiagnosed cases. Although distinguishing features are identifiable in some, how to best monitor and detect less described etiologies is still an issue. A comprehensive approach considering onset, seizure evolution, ictal semiology, clinical, laboratory, EEG, and neuroimaging data is key to diagnosis.

Summary

Phenotypic variability prevents precise recommendations, but a solid, consistent method moving from existing published guidelines helps in correctly assessing these newborns in order to provide better care, especially in view of expanding precision therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

aEEG:

Amplitude-integrated EEG

ARX:

X-linked aristaless-related homeobox gene

BFNIE:

Benign familial neonatal-infantile epilepsy

BRAT1:

BRCA1 associated ATM activator 1

c-EEG:

Conventional-EEG

CDKL5:

Cyclin dependent kinase like 5

COL4A1:

Collagen type IV alpha1 chain

EEG:

Electroencephalogram

EIMFS:

Epilepsy of infancy with migrating focal seizures

EME:

Early myoclonic encephalopathy

FGF12:

Fibroblast growth factor 12

GCS:

Glycine cleavage system

GNAO1:

G protein subunit alpha o1

HIE:

Hypoxic-ischemic encephalopathy

ILAE:

International League Against Epilepsy

IVH:

Intraventricular hemorrhage

MOCS1:

Molybdenum cofactor synthesis 1

NSE:

Neonatal status epilepticus

PACS2:

Phosphofurin acidic cluster sorting protein 2

PDE:

Pyridoxine-dependent epilepsy

PIGT:

Phosphatidylinositol-glycan biosynthesis class T

PLP:

Pyridoxal 5′-phosphate

PNPO:

Pyridox(am)ine 5′-phosphate oxidase

PRRT2:

Proline-rich transmembrane protein 2

SIK1:

Salt-induced kinase 1

SPTAN1:

Spectrin alpha, non-erythrocytic 1

STXBP1:

Syntaxin binding protein 1

SUOX:

Sulfite oxidase

TBC1D24:

TBC1 domain family member 24

TSC:

Tuberous sclerosis complex

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Pisani F, Cerminara C, Fusco C, Sisti L. Neonatal status epilepticus vs recurrent neonatal seizures: clinical findings and outcome. Neurology. 2007;69:2177–85.

    PubMed  Google Scholar 

  2. • Pisani F, et al. Incidence of neonatal seizures, perinatal risk factors for epilepsy and mortality after neonatal seizures in the province of Parma, Italy. Epilepsia. 2018;59:1764–73 Recent population-based study on neonatal seizures incidence and risk factors for mortality and epilepsy.

    PubMed  Google Scholar 

  3. Shellhaas RA. Seizure classification, etiology, and management. Handb Clin Neurol. 2019;162:347–61.

    PubMed  Google Scholar 

  4. Lynch NE, Stevenson NJ, Livingstone V, Mathieson S, Murphy BP, Rennie JM, et al. The temporal characteristics of seizures in neonatal hypoxic ischemic encephalopathy treated with hypothermia. Seizure. 2015;33:60–5.

    PubMed  Google Scholar 

  5. Andreolli A, Turco EC, Pedrazzi G, Beghi E, Pisani F. Incidence of epilepsy after neonatal seizures: a population-based study. Neuroepidemiology. 2019;52(3–4):144–51.

    PubMed  Google Scholar 

  6. Shellhaas RA, Chang T, Tsuchida T, Scher MS, Riviello JJ, Abend NS, et al. The American clinical neurophysiology Society's guideline on continuous electroencephalography monitoring in neonates. J Clin Neurophysiol. 2011;28(6):611–7.

    PubMed  Google Scholar 

  7. Ramantani G, Schmitt B, Plecko B, Pressler RM, Wohlrab G, Klebermass-Schrehof K, et al. Neonatal seizures-are we there yet? Neuropediatrics. 2019;50(5):280–93.

    PubMed  Google Scholar 

  8. • Cornet MC, Sands TT, Cilio MR. Neonatal epilepsies: clinical management. Semin fetal neonatal med. 2018;23(3):204–12 A review article addressing the clinical features and therapeutic strategies for neonatal-onset epilepsies.

    PubMed  Google Scholar 

  9. Axeen EJT, Olson HE. Neonatal epilepsy genetics. Semin Fetal Neonatal Med. 2018;23(3):197–203.

    PubMed  Google Scholar 

  10. Pisani F, Sisti L, Seri S. A scoring system for early prognostic assessment after neonatal seizures. Pediatrics. 2009;124(4):e580–7.

    PubMed  Google Scholar 

  11. Cornet MC, Cilio MR. Genetics of neonatal-onset epilepsies. Handb Clin Neurol. 2019;162:415–33.

    PubMed  Google Scholar 

  12. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512–21.

    PubMed  PubMed Central  Google Scholar 

  13. Hellström-Westas L, Boylan G, Ågren J. Systematic review of neonatal seizure management strategies provides guidance on anti-epileptic treatment. Acta Paediatr. 2015;104(2):123–9.

    PubMed  Google Scholar 

  14. McCoy B, Hahn CD. Continuous EEG monitoring in the neonatal intensive care unit. J Clin Neurophysiol. 2013;30(2):106–14.

    PubMed  Google Scholar 

  15. de Vries LS, Hellström-Westas L. Role of cerebral function monitoring in the newborn. Arch Dis Child Fetal Neonatal Ed. 2005;90(3):F201–7.

    PubMed  PubMed Central  Google Scholar 

  16. Abend NS, Wusthoff CJ. Neonatal seizures and status epilepticus. J Clin Neurophysiol. 2012;29(5):441–8.

    PubMed  PubMed Central  Google Scholar 

  17. Laroia N, Guillet R, Burchfiel J, McBride MC. EEG background as predictor of electrographic seizures in high-risk neonates. Epilepsia. 1998;39(5):545–51.

    CAS  PubMed  Google Scholar 

  18. Battin M, Bennet L, Gunn AJ. Rebound seizures during rewarming. Pediatrics. 2004;114(5):1369.

    PubMed  Google Scholar 

  19. Glass HC, Wusthoff CJ, Shellhaas RA, Tsuchida TN, Bonifacio SL, Cordeiro M, et al. Risk factors for EEG seizures in neonates treated with hypothermia: a multicenter cohort study. Neurology. 2014;82(14):1239–44.

    PubMed  PubMed Central  Google Scholar 

  20. Shah DK, Zempel J, Barton T, Lukas K, Inder TE. Electrographic seizures in preterm infants during the first week of life are associated with cerebral injury. Pediatr Res. 2010;67(1):102–6.

    PubMed  Google Scholar 

  21. Gupta SN, Kechli AM, Kanamalla US. Intracranial hemorrhage in term newborns: management and outcomes. Pediatr Neurol. 2009;40(1):1–12.

    PubMed  Google Scholar 

  22. Chequer RS, Tharp BR, Dreimane D, Hahn JS, Clancy RR, Coen RW. Prognostic value of EEG in neonatal meningitis: retrospective study of 29 infants. Pediatr Neurol. 1992;8(6):417–22.

    CAS  PubMed  Google Scholar 

  23. Murray DM, Boylan GB, Ali I, Ryan CA, Murphy BP, Connolly S. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed. 2008;93(3):F187–91.

    CAS  PubMed  Google Scholar 

  24. Clancy RR, Sharif U, Ichord R, Spray TL, Nicolson S, Tabbutt S, et al. Electrographic neonatal seizures after infant heart surgery. Epilepsia. 2005;46(1):84–90.

    PubMed  Google Scholar 

  25. Pisani F, Barilli AL, Sisti L, Bevilacqua G, Seri S. Preterm infants with video-EEG confirmed seizures: outcome at 30 months of age. Brain and Development. 2008;30(1):20–30.

    PubMed  Google Scholar 

  26. Orivoli S, Facini C, Pisani F. Paroxysmal nonepileptic motor phenomena in newborn. Brain and Development. 2015;37(9):833–9.

    PubMed  Google Scholar 

  27. Kotulska K, Jurkiewicz E, Domańska-Pakieła D, Grajkowska W, Mandera M, Borkowska J, et al. Epilepsy in newborns with tuberous sclerosis complex. Eur J Paediatr Neurol. 2014;18(6):714–21.

    PubMed  Google Scholar 

  28. French JA, Lawson JA, Yapici Z, Ikeda H, Polster T, Nabbout R, et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet. 2016;388(10056):2153–63.

    CAS  PubMed  Google Scholar 

  29. Shoubridge C, Fullston T, Gecz J. ARX spectrum disorders: making inroads into the molecular pathology. Hum Mutat. 2010;31:889–900.

    CAS  PubMed  Google Scholar 

  30. D'Gama AM, Geng Y, Couto JA, Martin B, Boyle EA, LaCoursiere C, et al. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann Neurol. 2015;77(4):720–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. John S, Jehi L, Manno EM, Conway DS, Uchino K. COL4A1 gene mutation: beyond a vascular syndrome. Seizure. 2015;31:19–21.

    PubMed  Google Scholar 

  32. Sands TT, Balestri M, Bellini G, Mulkey SB, Danhaive O, Bakken EH, et al. Rapid and safe response to low-dose carbamazepine in neonatal epilepsy. Epilepsia. 2016;57(12):2019–30.

    CAS  PubMed  Google Scholar 

  33. Weckhuysen S, Mandelstam S, Suls A, Audenaert D, Deconinck T, Claes LR, et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol. 2012;71(1):15–25.

    CAS  PubMed  Google Scholar 

  34. Numis AL, et al. KCNQ2 encephalopathy: delineation of the electroclinical phenotype and treatment response. Neurology. 2014;82(4):368–70.

    PubMed  PubMed Central  Google Scholar 

  35. Pisano T, Numis AL, Heavin SB, Weckhuysen S, Angriman M, Suls A, et al. Early and effective treatment of KCNQ2 encephalopathy. Epilepsia. 2015;56(5):685–91.

    CAS  PubMed  Google Scholar 

  36. Olson HE, Kelly M, LaCoursiere C, Pinsky R, Tambunan D, Shain C, et al. Genetics and genotype-phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann Neurol. 2017;81:419–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lauritano A, Moutton S, Longobardi E, Tran Mau-Them F, Laudati G, Nappi P, et al. A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy. Epilepsia Open. 2019;4(3):464–75.

    PubMed  PubMed Central  Google Scholar 

  38. Wolff M, Johannesen KM, Hedrich UBS, Masnada S, Rubboli G, Gardella E, et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain. 2017;140(5):1316–36.

    PubMed  Google Scholar 

  39. Barcia G, Fleming MR, Deligniere A, Gazula VR, Brown MR, Langouet M, et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet. 2012;44(11):1255–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Štěrbová K, Vlčková M, Klement P, Neupauerová J, Staněk D, Zůnová H, et al. Neonatal onset of epilepsy of infancy with migrating focal seizures associated with a novel GABRB3 variant in monozygotic twins. Neuropediatrics. 2018;49:204–8.

    PubMed  Google Scholar 

  41. Milligan CJ, Li M, Gazina EV, Heron SE, Nair U, Trager C, et al. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol. 2014;75(4):581–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Allen AS, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501:217–21.

    CAS  PubMed  Google Scholar 

  43. Hernandez CC, XiangWei W, Hu N, Shen D, Shen W, Lagrange AH, et al. Altered inhibitory synapses in de novo GABRA5 and GABRA1 mutations associated with early onset epileptic encephalopathies. Brain. 2019;142(7):1938–54.

    PubMed  Google Scholar 

  44. Epi4K Consortium. De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am J Hum Genet. 2016;99:287–98.

    Google Scholar 

  45. Bozarth X, Dines JN, Cong Q, Mirzaa GM, Foss K, Lawrence Merritt J 2nd, et al. Expanding clinical phenotype in CACNA1C related disorders: from neonatal onset severe epileptic encephalopathy to late-onset epilepsy. Am J Med Genet A. 2018;176(12):2733–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Reinson K, Õiglane-Shlik E, Talvik I, Vaher U, Õunapuu A, Ennok M, et al. Biallelic CACNA1A mutations cause early onset epileptic encephalopathy with progressive cerebral, cerebellar, and optic nerve atrophy. Am J Med Genet A. 2016;170(8):2173–6.

    CAS  PubMed  Google Scholar 

  47. Shimomura K, Hörster F, de Wet H, Flanagan SE, Ellard S, Hattersley AT, et al. A novel mutation causing DEND syndrome: a treatable channelopathy of pancreas and brain. Neurology. 2007;69(13):1342–9.

    CAS  PubMed  Google Scholar 

  48. Guella I, Huh L, McKenzie M, Toyota EB, Bebin EM, Thompson ML, et al. De novo FGF12 mutation in 2 patients with neonatal-onset epilepsy. Neurol Genet. 2016;2(6):e120.

    PubMed  PubMed Central  Google Scholar 

  49. Olson HE, et al. A recurrent De novo PACS2 heterozygous missense variant causes neonatal-onset developmental epileptic encephalopathy, facial Dysmorphism, and cerebellar Dysgenesis. Am J Hum Genet. 2018;103(4):631.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Saitsu H, Kato M, Mizuguchi T, Hamada K, Osaka H, Tohyama J, et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet. 2008;40:782–8.

    CAS  PubMed  Google Scholar 

  51. Tohyama J, et al. SPTAN1 encephalopathy: distinct phenotypes and genotypes. J Hum Genet. 2015;60:167e73.

    Google Scholar 

  52. Syrbe S, Harms FL, Parrini E, Montomoli M, Mütze U, Helbig KL, et al. Delineating SPTAN1 associated phenotypes: from isolated epilepsy to encephalopathy with progressive brain atrophy. Brain. 2017;140(9):2322–36.

    PubMed  PubMed Central  Google Scholar 

  53. Guerrero-López R, Ortega-Moreno L, Giráldez BG, Alarcón-Morcillo C, Sánchez-Martín G, Nieto-Barrera M, et al. Atypical course in individuals from Spanish families with benign familial infantile seizures and mutations in the PRRT2 gene. Epilepsy Res. 2014;108(8):1274–8.

    PubMed  Google Scholar 

  54. Ebrahimi-Fakhari D, Saffari A, Westenberger A, Klein C. The evolving spectrum of PRRT2-associated paroxysmal diseases. Brain. 2015;138(Pt 12):3476–95.

    PubMed  Google Scholar 

  55. Maini I, Iodice A, Spagnoli C, Salerno GG, Bertani G, Frattini D, et al. Expanding phenotype of PRRT2 gene mutations: a new case with epilepsy and benign myoclonus of early infancy. Eur J Paediatr Neurol. 2016;20(3):454–6.

    PubMed  Google Scholar 

  56. Balestrini S, Milh M, Castiglioni C, Lüthy K, Finelli MJ, Verstreken P, et al. TBC1D24 genotype-phenotype correlation: epilepsies and other neurologic features. Neurology. 2016;87:77–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hansen J, Snow C, Tuttle E, Ghoneim DH, Yang CS, Spencer A, et al. De novo mutations in SIK1 cause a spectrum of developmental epilepsies. Am J Hum Genet. 2015;96:682–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Klein KM, Yendle SC, Harvey AS, Antony JH, Wallace G, Bienvenu T, et al. A distinctive seizure type in patients with CDKL5 mutations: Hypermotor-tonic-spasms sequence. Neurology. 2011;76(16):1436–8.

    CAS  PubMed  Google Scholar 

  59. Melani F, Mei D, Pisano T, Savasta S, Franzoni E, Ferrari AR, et al. CDKL5 gene-related epileptic encephalopathy: electroclinical findings in the first year of life. Dev Med Child Neurol. 2011;53:354–60.

    PubMed  Google Scholar 

  60. Bahi-Buisson N, Kaminska A, Boddaert N, Rio M, Afenjar A, Gérard M, et al. The three stages of epilepsy in patients with CDKL5 mutations. Epilepsia. 2008;49(6):1027–37.

    CAS  PubMed  Google Scholar 

  61. Feng H, Sjogren B, Karaj B, Shaw V, Gezer A, Neubig RR. Movement disorder in GNAO1 encephalopathy associated with gain-of-function mutations. Neurology. 2017;89:762–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Horn D, Weschke B, Knierim E, Fischer-Zirnsak B, Stenzel W, Schuelke M, et al. BRAT1 mutations are associated with infantile epileptic encephalopathy, mitochondrial dysfunction, and survival into childhood. Am J Med Genet A. 2016;170:2274–81.

    CAS  PubMed  Google Scholar 

  63. Srivastava S, et al. BRAT1 mutations present with a spectrum of clinical severity. Am J Med Genet A. 2016;170(9):2265–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dilena R, DiFrancesco J, Soldovieri MV, Giacobbe A, Ambrosino P, Mosca I, et al. Early treatment with quinidine in 2 patients with epilepsy of infancy with migrating focal seizures (EIMFS) due to gain-of-function KCNT1 mutations: functional studies, clinical responses, and critical issues for personalized therapy. Neurotherapeutics. 2018;15(4):1112–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mills PB, Struys E, Jakobs C, Plecko B, Baxter P, Baumgartner M, et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med. 2006;12:307–9.

    CAS  PubMed  Google Scholar 

  66. Kuo MF, Wang HS. Pyridoxal phosphate-responsive epilepsy with resistance to pyridoxine. Pediatr Neurol. 2002;26(2):146–7.

    PubMed  Google Scholar 

  67. Plecko B, Zweier M, Begemann A, Mathis D, Schmitt B, Striano P, et al. Confirmation of mutations in PROSC as a novel cause of vitamin B 6-dependent epilepsy. J Med Genet. 2017;54:809–14.

    CAS  PubMed  Google Scholar 

  68. Guzel Nur B, et al. Pyridoxine-responsive seizures in infantile hypophosphatasia and a novel homozygous mutation in ALPL gene. J Clin Res Pediatr Endocrinol. 2016;8:360e4.

    Google Scholar 

  69. Van Hove J, Coughlin C II, Scharer G. Glycine Encephalopathy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors.

  70. Bruun TUJ, DesRoches C, Wilson D, Chau V, Nakagawa T, Yamasaki M, et al. Prospective cohort study for identification of underlying genetic causes in neonatal encephalopathy using whole-exome sequencing. Genet Med. 2018;20(5):486–94.

    CAS  PubMed  Google Scholar 

  71. Mastrangelo M. Actual insights into treatable inborn errors of metabolism causing epilepsy. J Pediatr Neurosci. 2018;13(1):13–23.

    PubMed  PubMed Central  Google Scholar 

  72. Atwal PS, Scaglia F. Molybdenum cofactor deficiency. Mol Genet Metab. 2016 Jan;117(1):1–4.

    CAS  PubMed  Google Scholar 

  73. Schwahn BC, van Spronsen F, Belaidi AA, Bowhay S, Christodoulou J, Derks TG, et al. Efficacy and safety of cyclic pyranopterin monophosphate substitution in severe molybdenum cofactor deficiency type a: a prospective cohort study. Lancet. 2015;386(10007):1955–63.

    CAS  PubMed  Google Scholar 

  74. Sass JO, Gunduz A, Araujo Rodrigues Funayama C, Korkmaz B, Dantas Pinto KG, Tuysuz B, et al. Functional deficiencies of sulfite oxidase: differential diagnoses in neonates presenting with intractable seizures and cystic encephalomalacia. Brain and Development. 2010;32:544–9.

    PubMed  Google Scholar 

  75. Bindu PS, Nagappa M, Bharath RD, Taly AB. Isolated sulfite oxidase deficiency. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. GeneReviews [internet]. Seattle (WA): University of Washington, Seattle; 2017. p. 1993–2020.

    Google Scholar 

  76. Honzik T, Tesarova M, Magner M, Mayr J, Jesina P, Vesela K, et al. Neonatal onset of mitochondrial disorders in 129 patients: clinical and laboratory characteristics and a new approach to diagnosis. J Inherit Metab Dis. 2012;35:749–59.

    PubMed  Google Scholar 

  77. Kodera H, Nakamura K, Osaka H, Maegaki Y, Haginoya K, Mizumoto S, et al. De novo mutations in SLC35A2 encoding a UDP-galactose transporter cause early-onset epileptic encephalopathy. Hum Mutat. 2013;34:1708–14.

    CAS  PubMed  Google Scholar 

  78. Kato M, et al. PIGA mutations cause early-onset epileptic encephalopathies and distinctive features. Neurology. 2014;82:1587e96.

    Google Scholar 

  79. Bayat A, Knaus A, Juul AW, Dukic D, Gardella E, Charzewska A, et al. PIGT-CDG, a disorder of the glycosylphosphatidylinositol anchor: description of 13 novel patients and expansion of the clinical characteristics. Genet Med. 2019;21(10):2216–23.

    CAS  PubMed  Google Scholar 

  80. Yates TM, Suri M, Desurkar A, Lesca G, Wallgren-Pettersson C, Hammer TB, et al. SLC35A2-related congenital disorder of glycosylation: defining the phenotype. Eur J Paediatr Neurol. 2018;22(6):1095–102.

    PubMed  Google Scholar 

  81. Hardies K, de Kovel CG, Weckhuysen S, Asselbergh B, Geuens T, Deconinck T, et al. Recessive mutations in SLC13A5 result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia. Brain. 2015;138:3238–50.

    PubMed  Google Scholar 

  82. • Nunes ML, et al. Neonatal seizures: is there a relationship between ictal electroclinical features and etiology? A critical appraisal based on a systematic literature review. Epilepsia open. 2019;4(1):10–29 A recent review paper critically summarizing data on the controversial relationship between ictal semiology and etiology.

    PubMed  PubMed Central  Google Scholar 

  83. Rennie JM, de Vries LS, Blennow M, Foran A, Shah DK, Livingstone V, et al. Characterisation of neonatal seizures and their treatment using continuous EEG monitoring: a multicentre experience. Arch Dis Child Fetal Neonatal Ed. 2019;104(5):F493–501.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlotta Spagnoli.

Ethics declarations

Conflict of Interest

All authors declare that they don’t have conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Neurology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisani, F., Spagnoli, C. & Fusco, C. EEG Monitoring of the Epileptic Newborn. Curr Neurol Neurosci Rep 20, 6 (2020). https://doi.org/10.1007/s11910-020-1027-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-020-1027-7

Keywords

Navigation