Skip to main content

Advertisement

Log in

Current Diagnosis and Treatment of Painful Small Fiber Neuropathy

  • Nerve and Muscle (L.H. Weimer, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Small fiber neuropathy (SFN) could cause significant morbidity due to neuropathic pain and autonomic dysfunction. SFN is underdiagnosed and the knowledge on the condition is limited among general public and health care professionals. This review is intended to enhance the understanding of SFN symptoms, causes, diagnostic tools, and therapeutic options.

Recent Findings

There is evidence of SFN in up to 40% patients with fibromyalgia. The causes of SFN are glucose metabolism defect, dysimmune, gluten sensitivity and celiac disease, monoclonal gammopathy, vitamin deficiencies, toxic agents, cancer, and unknown etiology. Auto-antibodies targeting neuronal antigens trisulfated heparin disaccharide (TS-HDS) and fibroblast growth factor 3 (FGFR3) are found in up to 20% of patients with SFN. Treatment of SFN includes treating the etiology and managing symptoms.

Summary

SFN should be considered in patients with wide-spread body pain. The search for known causes of SFN is a crucial step in disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tavee J, Zhou L. Small fiber neuropathy: a burning problem. Cleve Clin J Med. 2009;76(5):297–305.

    PubMed  Google Scholar 

  2. Hsieh ST. Pathology and functional diagnosis of small-fiber painful neuropathy. Acta Neurol Taiwanica. 2010;19(2):82–9.

    Google Scholar 

  3. •• Oaklander AL, Nolano M. Scientific advances in and clinical approaches to small-fiber polyneuropathy: a review. JAMA Neurol. 2019; This is a comprehensive review on the current knowledge about small fiber neuropathy and treatment options.

  4. Hovaguimian A, Gibbons CH. Diagnosis and treatment of pain in small-fiber neuropathy. Curr Pain Headache Rep. 2011;15(3):193–200.

    PubMed  PubMed Central  Google Scholar 

  5. •• Tavee JO. Office approach to small fiber neuropathy. Cleve Clin J Med. 2018;85(10):801–12 This paper intorduces a practical approach to patients with small fiber neuropathy.

    PubMed  Google Scholar 

  6. Singer W, et al. Prospective evaluation of somatic and autonomic small fibers in selected autonomic neuropathies. Neurology. 2004;62(4):612–8.

    PubMed  CAS  Google Scholar 

  7. Dabby R, et al. Evaluation of cutaneous autonomic innervation in idiopathic sensory small-fiber neuropathy. J Peripher Nerv Syst. 2007;12(2):98–101.

    PubMed  Google Scholar 

  8. Joseph P, S.J., Rodriguez C et al. The pathopysiology of chronic fatigue syndrome: results from an incasive cardiopulmonary exercise laboratory, in Presented at American Thoracic Society. 2019.

  9. Fukuda T, et al. Sema3A regulates bone-mass accrual through sensory innervations. Nature. 2013;497(7450):490–3.

    PubMed  CAS  Google Scholar 

  10. Albrecht PJ, et al. Excessive peptidergic sensory innervation of cutaneous arteriole-venule shunts (AVS) in the palmar glabrous skin of fibromyalgia patients: implications for widespread deep tissue pain and fatigue. Pain Med. 2013;14(6):895–915.

    PubMed  Google Scholar 

  11. •• Liu X, et al. IVIg for apparently autoimmune small-fiber polyneuropathy: first analysis of efficacy and safety. Ther Adv Neurol Disord. 2018;11:1756285617744484 This paper is the first report of benefit of immunoglobulin therapy in patients with small fiber neuropathy.

    PubMed  PubMed Central  Google Scholar 

  12. •• Levine TD. Small fiber neuropathy: disease classification beyond pain and burning. J Cent Nerv Syst Dis, 2018;10:1179573518771703 This paper proposes new classification for patients with small fiber neuropathy.

    Google Scholar 

  13. Peters MJ, et al. Incidence and prevalence of small-fiber neuropathy: a survey in the Netherlands. Neurology. 2013;81(15):1356–60.

    PubMed  Google Scholar 

  14. • Lawson VH, et al. Fibromyalgia syndrome and small fiber, early or mild sensory polyneuropathy. Muscle Nerve. 2018; This study confirms the presence of small fiber neuropathy in a subset of patients with fibromayalgia and also shows evidence of early large fiber neuropathy in these patietns.

  15. Caro XJ, Winter EF. Evidence of abnormal epidermal nerve fiber density in fibromyalgia: clinical and immunologic implications. Arthritis Rheum. 2014;66(7):1945–54.

    Google Scholar 

  16. Kosmidis ML, et al. Reduction of intraepidermal nerve fiber density (IENFD) in the skin biopsies of patients with fibromyalgia: a controlled study. J Neurol Sci. 2014;347(1-2):143–7.

    PubMed  Google Scholar 

  17. Giannoccaro MP, et al. Small nerve fiber involvement in patients referred for fibromyalgia. Muscle Nerve. 2014;49(5):757–9.

    PubMed  Google Scholar 

  18. Oaklander AL, Klein MM. Evidence of small-fiber polyneuropathy in unexplained, juvenile-onset, widespread pain syndromes. Pediatrics. 2013;131(4):e1091–100.

    PubMed  PubMed Central  Google Scholar 

  19. Uceyler N, et al. Small fibre pathology in patients with fibromyalgia syndrome. Brain. 2013;136(Pt 6):1857–67.

    PubMed  Google Scholar 

  20. Oaklander AL, et al. Objective evidence that small-fiber polyneuropathy underlies some illnesses currently labeled as fibromyalgia. Pain. 2013;154(11):2310–6.

    PubMed  Google Scholar 

  21. • Farhad K, Oaklander AL. Fibromyalgia and small-fiber polyneuropathy: what’s in a name? Muscle Nerve. 2018;58(5):611–3 This editorial emphasizes on the consideration of testing patients with “fibromyalgia” for small fiber neruopathy.

    PubMed  Google Scholar 

  22. Malik A, et al. Prevalence of axonal sensory neuropathy with igm binding to trisulfated heparin disaccharide in patients with fibromyalgia. J Clin Neuromuscul Dis. 2019;20(3):103–10.

    PubMed  Google Scholar 

  23. Marques AP, et al. Prevalence of fibromyalgia: literature review update. Rev Bras Reumatol Engl Ed. 2017;57(4):356–63.

    PubMed  Google Scholar 

  24. Notermans NC, et al. Chronic idiopathic polyneuropathy presenting in middle or old age: a clinical and electrophysiological study of 75 patients. J Neurol Neurosurg Psychiatry. 1993;56(10):1066–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Periquet MI, et al. Painful sensory neuropathy: prospective evaluation using skin biopsy. Neurology. 1999;53(8):1641–7.

    PubMed  CAS  Google Scholar 

  26. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of paraproteinemic demyelinating neuropathies. Report of a Joint Task Force of the European Federation of Neurological Societies and the Peripheral Nerve Society--first revision. J Peripher Nerv Syst. 2010;15(3):185–95.

    Google Scholar 

  27. Devigili G, et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain. 2008;131(Pt 7):1912–25.

    PubMed  PubMed Central  Google Scholar 

  28. England JD, et al. Practice Parameter: evaluation of distal symmetric polyneuropathy: role of laboratory and genetic testing (an evidence-based review). Report of the American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, and American Academy of Physical Medicine and Rehabilitation. Neurology. 2009;72(2):185–92.

    PubMed  CAS  Google Scholar 

  29. Lauria G, et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol. 2010;17(7):903–12 e44-9.

    PubMed  CAS  Google Scholar 

  30. McArthur JC, et al. Epidermal nerve fiber density: normative reference range and diagnostic efficiency. Arch Neurol. 1998;55(12):1513–20.

    PubMed  CAS  Google Scholar 

  31. Low PA, Tomalia VA, Park KJ. Autonomic function tests: some clinical applications. J Clin Neurol. 2013;9(1):1–8.

    PubMed  PubMed Central  Google Scholar 

  32. Stewart JD, Low PA, Fealey RD. Distal small fiber neuropathy: results of tests of sweating and autonomic cardiovascular reflexes. Muscle Nerve. 1992;15(6):661–5.

    PubMed  CAS  Google Scholar 

  33. Gwathmey KG, Pearson KT. Diagnosis and management of sensory polyneuropathy. BMJ. 2019;365:l1108.

    PubMed  Google Scholar 

  34. Backonja MM, et al. Value of quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus. Pain. 2013;154(9):1807–19.

    PubMed  Google Scholar 

  35. Ziegler D, et al. Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes. 2014;63(7):2454–63.

    PubMed  Google Scholar 

  36. Cruzat A, Qazi Y, Hamrah P. In vivo confocal microscopy of corneal nerves in health and disease. Ocul Surf. 2017;15(1):15–47.

    PubMed  Google Scholar 

  37. Papanas N, Ziegler D. Corneal confocal microscopy: a new technique for early detection of diabetic neuropathy. Curr Diab Rep. 2013;13(4):488–99.

    PubMed  CAS  Google Scholar 

  38. O'Neill F, et al. Corneal confocal microscopy detects small-fiber neuropathy in burning mouth syndrome: a cross-sectional study. J Oral Fac Pain Headache. 2019.

  39. Smith AG, et al. The diagnostic utility of Sudoscan for distal symmetric peripheral neuropathy. J Diabetes Complicat. 2014;28(4):511–6.

    PubMed  PubMed Central  Google Scholar 

  40. Casellini CM, et al. Sudoscan, a noninvasive tool for detecting diabetic small fiber neuropathy and autonomic dysfunction. Diabetes Technol Ther. 2013;15(11):948–53.

    PubMed  PubMed Central  Google Scholar 

  41. Novak P. Electrochemical skin conductance correlates with skin nerve fiber density. Front Aging Neurosci. 2016;8:199.

    PubMed  PubMed Central  Google Scholar 

  42. Rajan S, et al. Sudomotor function testing by electrochemical skin conductance: does it really measure sudomotor function? Clin Auton Res. 2019;29(1):31–9.

    PubMed  Google Scholar 

  43. Hoffman EM, et al. Impairments and comorbidities of polyneuropathy revealed by population-based analyses. Neurology. 2015;84(16):1644–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Visser NA, et al. Incidence of polyneuropathy in Utrecht, the Netherlands. Neurology. 2015;84(3):259–64.

    PubMed  CAS  Google Scholar 

  45. • Farhad K, et al. Causes of neuropathy in patients referred as “idiopathic neuropathy”. Muscle Nerve. 2016;53(6):856–61 This paper discusses causes of peripheral neuropathy.

    PubMed  Google Scholar 

  46. •• MacDonald S, et al. Longitudinal follow-up of biopsy-proven small fiber neuropathy. Muscle Nerve. 2019; This study is a comprehensive evelaution of prognosis of patients with small fiber neuropathy.

  47. Ziegler D, et al. Prevalence of polyneuropathy in pre-diabetes and diabetes is associated with abdominal obesity and macroangiopathy: the MONICA/KORA Augsburg Surveys S2 and S3. Diabetes Care. 2008;31(3):464–9.

    PubMed  CAS  Google Scholar 

  48. Ziegler D, et al. Neuropathic pain in diabetes, prediabetes and normal glucose tolerance: the MONICA/KORA Augsburg Surveys S2 and S3. Pain Med. 2009;10(2):393–400.

    PubMed  Google Scholar 

  49. Nesbitt C, Wong D, Batchelor P. Polyradiculopathy secondary to severe hypertriglyceridemia. BMJ Case Rep. 2015;2015.

  50. Callaghan BC, et al. Association between metabolic syndrome components and polyneuropathy in an obese population. JAMA Neurol. 2016;73(12):1468–76.

    PubMed  PubMed Central  Google Scholar 

  51. Chin RL, et al. Celiac neuropathy. Neurology. 2003;60(10):1581–5.

    PubMed  CAS  Google Scholar 

  52. Thawani SP, et al. Risk of neuropathy among 28,232 patients with biopsy-verified celiac disease. JAMA Neurol. 2015;72(7):806–11.

    PubMed  Google Scholar 

  53. in Dietary reference intakes: a risk assessment model for establishing upper intake levels for nutrients. Washington (DC); 1998.

  54. Zeng L, Alongkronrusmee D, van Rijn RM. An integrated perspective on diabetic, alcoholic, and drug-induced neuropathy, etiology, and treatment in the US. J Pain Res. 2017;10:219–28.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. • Farhad K, Brannagan TH. Neuropathy, toxic. In: Aminoff MJ, Daroff RB, editors. Encyclopedia of the neurological sciences. 2nd ed: Elsevier; 2014. p. 511–5. This chapter is a comprehensive reference for neurotoxic medications.

  56. Vilholm OJ, et al. Drug-induced peripheral neuropathy. Basic Clin Pharmacol Toxicol. 2014;115(2):185–92.

    PubMed  CAS  Google Scholar 

  57. Francis JK, Higgins E. Permanent peripheral neuropathy: a case report on a rare but serious debilitating side-effect of fluoroquinolone administration. J Investig Med High Impact Case Rep. 2014;2(3):2324709614545225.

    PubMed  PubMed Central  Google Scholar 

  58. Grill MF, Maganti RK. Neurotoxic effects associated with antibiotic use: management considerations. Br J Clin Pharmacol. 2011;72(3):381–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Mellion M, Gilchrist JM, de la Monte S. Alcohol-related peripheral neuropathy: nutritional, toxic, or both? Muscle Nerve. 2011;43(3):309–16.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Shah A, et al. Neurotoxicity in the Post-HAART Era: caution for the antiretroviral therapeutics. Neurotox Res. 2016;30(4):677–97.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Shin SC, Robinson-Papp J. Amyloid neuropathies. Mt Sinai J Med. 2012;79(6):733–48.

    PubMed  PubMed Central  Google Scholar 

  62. Coelho T, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79(8):785–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Voermans NC, et al. Pain in Ehlers-Danlos syndrome is common, severe, and associated with functional impairment. J Pain Symptom Manag. 2010;40(3):370–8.

    Google Scholar 

  64. Cazzato D, et al. Small fiber neuropathy is a common feature of Ehlers-Danlos syndromes. Neurology. 2016;87(2):155–9.

    PubMed  PubMed Central  Google Scholar 

  65. Camerota F, et al. Neuropathic pain is a common feature in Ehlers-Danlos syndrome. J Pain Symptom Manag. 2011;41(1):e2–4.

    Google Scholar 

  66. De Wandele I, et al. Autonomic symptom burden in the hypermobility type of Ehlers-Danlos syndrome: a comparative study with two other EDS types, fibromyalgia, and healthy controls. Semin Arthritis Rheum. 2014;44(3):353–61.

    PubMed  Google Scholar 

  67. Fikree A, et al. The association between Ehlers-Danlos syndrome-hypermobility type and gastrointestinal symptoms in university students: a cross-sectional study. Neurogastroenterol Motil. 2017;29(3).

    Google Scholar 

  68. De Wandele I, et al. Orthostatic intolerance and fatigue in the hypermobility type of Ehlers-Danlos Syndrome. Rheumatology (Oxford). 2016;55(8):1412–20.

    Google Scholar 

  69. Wang N, et al. Alpha-Synuclein in cutaneous autonomic nerves. Neurology. 2013;81(18):1604–10.

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Fujishiro H, et al. Cardiac sympathetic denervation correlates with clinical and pathologic stages of Parkinson's disease. Mov Disord. 2008;23(8):1085–92.

    PubMed  Google Scholar 

  71. Donadio V, et al. Skin nerve alpha-synuclein deposits: a biomarker for idiopathic Parkinson disease. Neurology. 2014;82(15):1362–9.

    PubMed  CAS  Google Scholar 

  72. Leclair-Visonneau L, et al. Heterogeneous pattern of autonomic dysfunction in Parkinson’s disease. J Neurol. 2018;265(4):933–41.

    PubMed  Google Scholar 

  73. Kass-Iliyya L, et al. Small fiber neuropathy in Parkinso’s disease: a clinical, pathological and corneal confocal microscopy study. Parkinsonism Relat Disord. 2015;21(12):1454–60.

    PubMed  PubMed Central  Google Scholar 

  74. Dabby R, et al. Skin biopsy for assessment of autonomic denervation in Parkinson’s disease. J Neural Transm (Vienna). 2006;113(9):1169–76.

    CAS  Google Scholar 

  75. de Araujo DF, et al. Small (autonomic) and large fiber neuropathy in Parkinson disease and parkinsonism. BMC Neurol. 2016;16:139.

    PubMed  PubMed Central  Google Scholar 

  76. Nolano M, et al. Sensory deficit in Parkinson’s disease: evidence of a cutaneous denervation. Brain. 2008;131(Pt 7):1903–11.

    PubMed  Google Scholar 

  77. Doppler K, et al. Cutaneous neuropathy in Parkinson’s disease: a window into brain pathology. Acta Neuropathol. 2014;128(1):99–109.

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Ceravolo R, et al. Neuropathy and levodopa in Parkinson’s disease: evidence from a multicenter study. Mov Disord. 2013;28(10):1391–7.

    PubMed  CAS  Google Scholar 

  79. Nolano M, et al. Neuropathy in idiopathic Parkinson disease: an iatrogenic problem? Ann Neurol. 2011;69(2):427–8 author reply 428-9.

    PubMed  Google Scholar 

  80. Toth C, et al. Neuropathy as a potential complication of levodopa use in Parkinson’s disease. Mov Disord. 2008;23(13):1850–9.

    PubMed  Google Scholar 

  81. Rajabally YA, Martey J. Levodopa, vitamins, ageing and the neuropathy of Parkinson’s disease. J Neurol. 2013;260(11):2844–8.

    PubMed  CAS  Google Scholar 

  82. Pestronk A, et al. Clinical and laboratory features of neuropathies with serum IgM binding to TS-HDS. Muscle Nerve. 2012;45(6):866–72.

    PubMed  CAS  Google Scholar 

  83. Antoine JC, et al. Antifibroblast growth factor receptor 3 antibodies identify a subgroup of patients with sensory neuropathy. J Neurol Neurosurg Psychiatry. 2015;86(12):1347–55.

    PubMed  Google Scholar 

  84. Samara V, Sampson J, Muppidi S. FGFR3 Antibodies in neuropathy: what to do with them? J Clin Neuromuscul Dis. 2018;20(1):35–40.

    PubMed  Google Scholar 

  85. Scheib J, Hoke A. Advances in peripheral nerve regeneration. Nat Rev Neurol. 2013;9(12):668–76.

    PubMed  CAS  Google Scholar 

  86. Bril V, et al. Evidence-based guideline: Treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology. 2011;76(20):1758–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Attal N, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol. 2010;17(9):1113–e88.

    PubMed  CAS  Google Scholar 

  88. Ablin J, et al. Treatment of fibromyalgia syndrome: recommendations of recent evidence-based interdisciplinary guidelines with special emphasis on complementary and alternative therapies. Evid Based Complement Alternat Med. 2013;2013:485272.

    PubMed  PubMed Central  Google Scholar 

  89. Morozumi S, et al. Intravenous immunoglobulin treatment for painful sensory neuropathy associated with Sjogren’s syndrome. J Neurol Sci. 2009;279(1-2):57–61.

    PubMed  CAS  Google Scholar 

  90. Wakasugi D, et al. Extreme efficacy of intravenous immunoglobulin therapy for severe burning pain in a patient with small fiber neuropathy associated with primary Sjogren’s syndrome. Mod Rheumatol. 2009;19(4):437–40.

    PubMed  Google Scholar 

  91. • Tavee JO, et al. Sarcoidosis-associated small fiber neuropathy in a large cohort: clinical aspects and response to IVIG and anti-TNF alpha treatment. Respir Med. 2017;126:135–8 This paper discusses the benefit of immunotherapy in management of patients with small fiber neuropahty in the setting of sarcoidosis.

    PubMed  Google Scholar 

  92. Dave A.a.S., J. Use of intravenous immunoglobulin in small fiber neuoprahty associated with FGFR3. AAN Abstracts, 2018.

  93. • Gibbons CH. IVIg for small fiber neuropathy with autoantibodies TS-HDS and FGFR3. 2018, NCT number: NCT02637700: Clinical Trials. This is the clinical trial recruiting patinets with TS-HDS and FGFR3 antibody and skin biopsy proven.

  94. • Khoshnoodi MA, et al. Longitudinal assessment of small fiber neuropathy: evidence of a non-length-dependent distal axonopathy. JAMA Neurol. 2016;73(6):684–90 This paper discusses the long term prognosis and outcomes of patients with small fiber neuropathy.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khosro Farhad.

Ethics declarations

Conflict of Interest

Khosro Farhad declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nerve and Muscle

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhad, K. Current Diagnosis and Treatment of Painful Small Fiber Neuropathy. Curr Neurol Neurosci Rep 19, 103 (2019). https://doi.org/10.1007/s11910-019-1020-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-019-1020-1

Keywords

Navigation