Skip to main content

Advertisement

Log in

Migraine: What Imaging Reveals

  • Neuroimaging (DJ Brooks, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Although migraine symptomatology is well-defined, our understanding of migraine pathophysiology is incomplete. Structural and functional brain imaging can contribute to a greater understanding of migraine pathophysiology. Recent neuroimaging studies demonstrate that migraine is associated with structural and functional alterations of brain regions commonly implicated in pain processing. This review summarizes recent brain structural and functional imaging findings in migraine and highlights those that are associated with characteristics such as the presence or absence of aura, associated cognitive dysfunction, sex-differences (male vs. female migraineurs), age, and disease burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Lipton RB, Stewart WF, Diamond S, Diamond ML, Reed M. Prevalence and burden of migraine in the United States: data from the American Migraine Study II. Headache. 2001;41:646–57.

    Article  CAS  PubMed  Google Scholar 

  2. Lipton RB, Bigal ME, Diamond M, Freitag F, Reed ML, Stewart WF. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology. 2007;68:343–9.

    Article  CAS  PubMed  Google Scholar 

  3. Centers for disease control and prevention. Asthma episodes and current asthma. http://www.cdc.gov/nchs/data/nhis/earlyrelease/.200709_15.pdf.

  4. American Diabetes Association. Total prevalence of diabetes and pre-diabetes. http://.www.diabetes.org/diabetes-statistics/prevalence.jsp.

  5. Schwedt TJ, Shapiro RE. Funding of research on headache disorders by the National Institutes of Health. Headache. 2009;49:162–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. The international classification of headache disorders. 3rd edition (beta version). Cephalalgia. 2013;33:629–808.

    Article  Google Scholar 

  7. Bigal M, Ashina S, Burstein R, et al. Prevalence and characteristics of allodynia in headache sufferers a population study. Neurology. 2008;70:1525–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kelman L. Osmophobia and taste abnormality in migraineurs: a tertiary care study. Headache. 2004;44:1019–23.

    Article  PubMed  Google Scholar 

  9. Lipton RB, Bigal ME, Ashina S, et al. Cutaneous allodynia in the migraine population. Ann Neurol. 2008;63:148–58.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vanagaite J, Pareja JA, Storen O, White LR, Sand T, Stovner LJ. Light-induced discomfort and pain in migraine. Cephalalgia. 1997;17:733–41.

    Article  CAS  PubMed  Google Scholar 

  11. Schwedt TJ, Zuniga L, Chong CD. Low heat pain thresholds in migraineurs between attacks. Cephalalgia. 2015;35:593–9.

    Article  PubMed  Google Scholar 

  12. Ashkenazi A, Mushtaq A, Yang I, Oshinsky ML. Ictal and interictal phonophobia in migraine-a quantitative controlled study. Cephalalgia. 2009;29:1042–8.

    Article  CAS  PubMed  Google Scholar 

  13. Weissman-Fogel I, Sprecher E, Granovsky Y, Yarnitsky D. Repeated noxious stimulation of the skin enhances cutaneous pain perception of migraine patients in-between attacks: clinical evidence for continuous sub-threshold increase in membrane excitability of central trigeminovascular neurons. Pain. 2003;104:693–700.

    Article  PubMed  Google Scholar 

  14. Stankewitz A, Schulz E, May A. Neuronal correlates of impaired habituation in response to repeated trigemino-nociceptive but not to olfactory input in migraineurs: an fMRI study. Cephalalgia. 2013;33:256–65.

    Article  CAS  PubMed  Google Scholar 

  15. Russo A, Tessitore A, Esposito F, et al. Pain processing in patients with migraine: an event-related fMRI study during trigeminal nociceptive stimulation. J Neurol. 2012;259:1903–12.

    Article  PubMed  Google Scholar 

  16. Griebe M, Flux F, Wolf ME, Hennerici MG, Szabo K. Multimodal assessment of optokinetic visual stimulation response in migraine with aura. Headache. 2014;54:131–41.

    Article  PubMed  Google Scholar 

  17. Datta R, Aguirre GK, Hu S, Detre JA, Cucchiara B. Interictal cortical hyperresponsiveness in migraine is directly related to the presence of aura. Cephalalgia. 2013;33:365–74.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hougaard A, Amin FM, Hoffmann MB, et al. Interhemispheric differences of fMRI responses to visual stimuli in patients with side-fixed migraine aura. Hum Brain Mapp. 2014;35:2714–23.

    Article  PubMed  Google Scholar 

  19. Moulton EA, Becerra L, Maleki N, et al. Painful heat reveals hyperexcitability of the temporal pole in interictal and ictal migraine states. Cereb Cortex (New York, NY :1991). 2011;21:435–48.

    CAS  Google Scholar 

  20. Moulton EA, Burstein R, Tully S, Hargreaves R, Becerra L, Borsook D. Interictal dysfunction of a brainstem descending modulatory center in migraine patients. PLoS One. 2008;3, e3799.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stankewitz A, Aderjan D, Eippert F, May A. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci Off J Soc Neurosci. 2011;31:1937–43.

    Article  CAS  Google Scholar 

  22. Burstein R, Jakubowski M, Garcia-Nicas E, et al. Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol. 2010;68:81–91.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stankewitz A, May A. Increased limbic and brainstem activity during migraine attacks following olfactory stimulation. Neurology. 2011;77:476–82.

    Article  PubMed  Google Scholar 

  24. Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol. 2011;70:838–45.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xue T, Yuan K, Zhao L, et al. Intrinsic brain network abnormalities in migraines without aura revealed in resting-state fMRI. PLoS One. 2012;7, e52927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwedt TJ, Larson-Prior L, Coalson RS, et al. Allodynia and descending pain modulation in migraine: a resting state functional connectivity analysis. Pain Med (Malden, Mass). 2014;15:154–65.

    Article  Google Scholar 

  27. Hadjikhani N, Ward N, Boshyan J, et al. The missing link: enhanced functional connectivity between amygdala and visceroceptive cortex in migraine. Cephalalgia. 2013;33:1264–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jin C, Yuan K, Zhao L, et al. Structural and functional abnormalities in migraine patients without aura. NMR Biomed. 2013;26:58–64.

    Article  PubMed  Google Scholar 

  29. Schwedt TJ, Schlaggar BL, Mar S, et al. Atypical resting-state functional connectivity of affective pain regions in chronic migraine. Headache. 2013;53:737–51.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tessitore A, Russo A, Conte F, et al. Abnormal connectivity within executive resting-state network in migraine with aura. Headache. 2015;55:794–805.

    Article  PubMed  Google Scholar 

  31. Tessitore A, Russo A, Giordano A, et al. Disrupted default mode network connectivity in migraine without aura. J Headache Pain. 2013;14:89.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xue T, Yuan K, Cheng P, et al. Alterations of regional spontaneous neuronal activity and corresponding brain circuit changes during resting state in migraine without aura. NMR Biomed. 2013;26:1051–8.

    Article  PubMed  Google Scholar 

  33. Zhao L, Liu J, Dong X, et al. Alterations in regional homogeneity assessed by fMRI in patients with migraine without aura stratified by disease duration. J Headache Pain. 2013;14:85.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu J, Zhao L, Li G, et al. Hierarchical alteration of brain structural and functional networks in female migraine sufferers. PLoS One. 2012;7, e51250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chong CD, Dodick DW, Schlaggar BL, Schwedt TJ. Atypical age-related cortical thinning in episodic migraine. Cephalalgia. 2014;34:1115–24.

    Article  PubMed  Google Scholar 

  36. Chong CD, Schwedt TJ. Migraine affects white-matter tract integrity: a diffusion-tensor imaging study. Cephalalgia. 2015.

  37. Chong CD, Starling AJ and Schwedt TJ. Interictal photosensitivity associates with altered brain structure in patients with episodic migraine. Cephalalgia. 2015

  38. Schwedt TJ, Berisha V, Chong CD. Temporal lobe cortical thickness correlations differentiate the migraine brain from the healthy brain. PLoS One. 2015;10, e0116687.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Messina R, Rocca MA, Colombo B, et al. Cortical abnormalities in patients with migraine: a surface-based analysis. Radiology. 2013;268:170–80.

    Article  PubMed  Google Scholar 

  40. Rocca MA, Ceccarelli A, Falini A, et al. Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke; a J Cereb Circ. 2006;37:1765–70.

    Article  Google Scholar 

  41. Rocca MA, Messina R, Colombo B, Falini A, Comi G, Filippi M. Structural brain MRI abnormalities in pediatric patients with migraine. J Neurol. 2014;261:350–7. Results yield evidence that suggest brain biomarkers for migraine.

    Article  PubMed  Google Scholar 

  42. Schmidt-Wilcke T, Ganssbauer S, Neuner T, Bogdahn U, May A. Subtle grey matter changes between migraine patients and healthy controls. Cephalalgia. 2008;28:1–4.

    CAS  PubMed  Google Scholar 

  43. Schmitz N, Admiraal-Behloul F, Arkink EB, et al. Attack frequency and disease duration as indicators for brain damage in migraine. Headache. 2008;48:1044–55.

    Article  PubMed  Google Scholar 

  44. Vincent MB, Hadjikhani N. Migraine aura and related phenomena: beyond scotomata and scintillations. Cephalalgia. 2007;27:1368–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hadjikhani N, Sanchez Del Rio M, Wu O, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A. 2001;98:4687–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tedeschi G, Russo A, Conte F, et al. Increased interictal visual network connectivity in patients with migraine with aura. Cephalalgia. 2016;36:139–47.

    Article  PubMed  Google Scholar 

  47. Dinia L, Bonzano L, Albano B, et al. White matter lesions progression in migraine with aura: a clinical and MRI longitudinal study. J Neuroimaging : Off J Am Soc Neuroimaging. 2013;23:47–52. This longitudinally designed study suggests a link between the progression of white matter changes and specific migraine characteristics.

  48. Cucchiara B, Datta R, Aguirre GK, Idoko KE, Detre J. Measurement of visual sensitivity in migraine: validation of two scales and correlation with visual cortex activation. Cephalalgia. 2015;35:585–92.

    Article  PubMed  Google Scholar 

  49. Bridge H, Stagg CJ, Near J, Lau CI, Zisner A, Cader MZ. Altered neurochemical coupling in the occipital cortex in migraine with visual aura. Cephalalgia. 2015;35:1025–30. Results of this study suggest a relationship between brain activation patterns and occipital glutamate/creatine ratios in migraineurs with aura.

    Article  PubMed  Google Scholar 

  50. Hougaard A, Amin FM, Hoffmann MB, et al. Structural gray matter abnormalities in migraine relate to headache lateralization, but not aura. Cephalalgia. 2015;35:3–9.

    Article  PubMed  Google Scholar 

  51. Buse DC, Loder EW, Gorman JA, et al. Sex differences in the prevalence, symptoms, and associated features of migraine, probable migraine and other severe headache: results of the American Migraine Prevalence and Prevention (AMPP) Study. Headache. 2013;53:1278–99.

    Article  PubMed  Google Scholar 

  52. Stewart WF, Wood C, Reed ML, Roy J, Lipton RB. Cumulative lifetime migraine incidence in women and men. Cephalalgia. 2008;28:1170–8.

    Article  CAS  PubMed  Google Scholar 

  53. Borsook D, Erpelding N, Lebel A, et al. Sex and the migraine brain. Neurobiol Dis. 2014;68:200–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Faria V, Erpelding N, Lebel A, et al. The migraine brain in transition: girls vs boys. Pain. 2015;156:2212–21.

    Article  PubMed  Google Scholar 

  55. Maleki N, Linnman C, Brawn J, Burstein R, Becerra L, Borsook D. Her versus his migraine: multiple sex differences in brain function and structure. Brain :a J Neurol. 2012;135:2546–59.

    Article  Google Scholar 

  56. Maleki N, Barmettler G, Moulton EA, et al. Female migraineurs show lack of insular thinning with age. Pain. 2015;156:1232–9.

    Article  PubMed  Google Scholar 

  57. Dai Z, Zhong J, Xiao P, et al. Gray matter correlates of migraine and gender effect: an meta-analysis of voxel-based morphometry studies. Neuroscience. 2015;299:88–96. This metaanalysis (of 9 studies) identifies common structural changes in migraine and suggests sex-specific structural differences in the migraine brain.

  58. Gil-Gouveia R, Oliveira AG, Martins IP. Subjective cognitive symptoms during a migraine attack: a prospective study of a clinic-based sample. Pain Phys. 2016;19:E137–50.

    Google Scholar 

  59. Gil-Gouveia R, Oliveira AG, Martins IP. The impact of cognitive symptoms on migraine attack-related disability. Cephalalgia. 2015.

  60. Mazzucchi A, Sinforiani E, Zinelli P, et al. Interhemispheric attentional functioning in classic migraine subjects during paroxysmal and interparoxysmal phases. Headache. 1988;28:488–93.

    Article  CAS  PubMed  Google Scholar 

  61. Kuhajda MC, Thorn BE, Klinger MR, Rubin NJ. The effect of headache pain on attention (encoding) and memory (recognition). Pain. 2002;97:213–21.

    Article  PubMed  Google Scholar 

  62. Mulder EJ, Linssen WH, Passchier J, Orlebeke JF, de Geus EJ. Interictal and postictal cognitive changes in migraine. Cephalalgia. 1999;19:557–65.

  63. Riva D, Usilla A, Aggio F, Vago C, Treccani C, Bulgheroni S. Attention in children and adolescents with headache. Headache. 2012;52:374–84.

    Article  PubMed  Google Scholar 

  64. Schmitz N, Arkink EB, Mulder M, et al. Frontal lobe structure and executive function in migraine patients. Neurosci Lett. 2008;440:92–6.

    Article  CAS  PubMed  Google Scholar 

  65. Pearson AJ, Chronicle EP, Maylor EA, Bruce LA. Cognitive function is not impaired in people with a long history of migraine: a blinded study. Cephalalgia. 2006;26:74–80.

    Article  CAS  PubMed  Google Scholar 

  66. Gao Q, Xu F, Jiang C, et al. Decreased functional connectivity density in pain-related brain regions of female migraine patients without aura. Brain Res 2015.

  67. Lai TH, Chou KH, Fuh JL, et al. Gray matter changes related to medication overuse in patients with chronic migraine. Cephalalgia. 2016.

  68. Tso AR, Trujillo A, Guo CC, Goadsby PJ, Seeley WW. The anterior insula shows heightened interictal intrinsic connectivity in migraine without aura. Neurology. 2015;84:1043–50.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Niddam DM, Lai KL, Fuh JL, Chuang CY, Chen WT, Wang SJ. Reduced functional connectivity between salience and visual networks in migraine with aura. Cephalalgia. 2016;36:53–66.

    Article  PubMed  Google Scholar 

  70. Mathur VA, Khan SA, Keaser ML, Hubbard CS, Goyal M, Seminowicz DA. Altered cognition-related brain activity and interactions with acute pain in migraine. NeuroImage Clin. 2015;7:347–58. Using a novel fMRI study design, authors show results which indicate a potential abnormal modulation of pain-cognition circuits in patients with migraine.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mickleborough MJ, Ekstrand C, Gould L, et al. Attentional network differences between migraineurs and non-migraine controls: fMRI Evidence. Brain Topogr. 2015.

  72. Liu J, Lan L, Li G, et al. Migraine-related gray matter and white matter changes at a 1-year follow-up evaluation. J Pain :Off J Am Pain Soc. 2013;14:1703–8.

    Article  Google Scholar 

  73. Erdelyi-Botor S, Aradi M, Kamson DO, et al. Changes of migraine-related white matter hyperintensities after 3 years: a longitudinal MRI study. Headache. 2015;55:55–70.

    Article  PubMed  Google Scholar 

  74. Palm-Meinders IH, Koppen H, Terwindt GM, et al. Structural brain changes in migraine. JAMA. 2012;308:1889–97. Published in 2012, it is the largest longitudinally designed study in the field.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao L, Liu J, Yan X, et al. Abnormal brain activity changes in patients with migraine: a short-term longitudinal study. J Clin Neurol (Seoul, Korea). 2014;10:229–35.

    Article  Google Scholar 

  76. Messina R, Rocca MA, Colombo B, et al. White matter microstructure abnormalities in pediatric migraine patients. Cephalagia. 2015;35(14):1278–86.

  77. Candee MS, McCandless RT, Moore KR, Arrington CB, Minich LL, Bale Jr JF. White matter lesions in children and adolescents with migraine. Pediatr Neurol. 2013;49:393–6.

    Article  PubMed  Google Scholar 

  78. Eidlitz-Markus T, Zeharia A, Haimi-Cohen Y, Konen O. MRI white matter lesions in pediatric migraine. Cephalalgia. 2013;33:906–13.

    Article  PubMed  Google Scholar 

  79. Bayram E, Topcu Y, Karaoglu P, Yis U, Cakmakci Guleryuz H, Kurul SH. Incidental white matter lesions in children presenting with headache. Headache. 2013;53:970–6.

    Article  PubMed  Google Scholar 

  80. Mar S, Kelly JE, Isbell S, Aung WY, Lenox J, Prensky A. Prevalence of white matter lesions and stroke in children with migraine. Neurology. 2013;81:1387–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine D. Chong.

Ethics declarations

Conflict of Interest

Catherine D. Chong declares that she has no conflict of interest.

Todd J. Schwedt has received consulting fees from Allergan, Amgen, Dr. Reddy’s, GBS, Supernus, Teva, and Zogenix. He receives royalties from Cambridge University Press and UpToDate .

David  W. Dodick, MD, in the past 12 months, has served on advisory boards and has consulted for Allergan, Amgen, Alder, CoLucid, Dr Reddy’s, Merck, ENeura, Eli Lilly & Company, Autonomic Technologies, Teva, Xenen, Tonix, Trigemina, Supernus, ScionNeurostim, and Boston Scientific. He has options in Xalan, Epien, and Second Opinion. He is on the board of directors of the King Devick Test. Within the past 12 months, Dr. Dodick has received royalties, funding for travel, speaking, or editorial activities from the following: Healthlogix, Haymarket Media Group, Ltd., SAGE Publishing, Lippincott Williams & Wilkins, Oxford University Press, and Cambridge University Press. He receives publishing royalties for Wolff’s Headache, 8th edition (Oxford University Press, 2009) and Handbook of Headache (Cambridge University Press, 2010). 

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Neuroimaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, C.D., Schwedt, T.J. & Dodick, D.W. Migraine: What Imaging Reveals. Curr Neurol Neurosci Rep 16, 64 (2016). https://doi.org/10.1007/s11910-016-0662-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-016-0662-5

Keywords

Navigation