Skip to main content

Advertisement

Log in

Administration of Uric Acid in the Emergency Treatment of Acute Ischemic Stroke

  • Stroke (HP Adams, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Oxidative stress is one of the main mechanisms implicated in the pathophysiology of inflammatory and neurodegenerative diseases of the central nervous system (CNS). Uric acid (UA) is the end product of purine catabolism in humans, and it is the main endogenous antioxidant in blood. Low circulating UA levels have been associated with an increased prevalence and worse clinical course of several neurodegenerative and inflammatory diseases of the CNS, including Parkinson’s disease and multiple sclerosis. Moreover, the exogenous administration of UA exerts robust neuroprotective properties in experimental models of CNS disease, including brain ischemia, spinal cord injury, meningitis, and experimental allergic encephalitis. In experimental brain ischemia, exogenous UA and the thrombolytic agent alteplase exert additive neuroprotective effects when administered in combination. UA is rapidly consumed following acute ischemic stroke, and higher UA levels at stroke admission are associated with a better outcome and reduced infarct growth at follow-up. A recent phase II trial demonstrated that the combined intravenous administration of UA and alteplase is safe and prevents an early decrease of circulating UA levels in acute ischemic stroke patients. Moreover, UA prevents the increase in the circulating levels of the lipid peroxidation marker malondialdehyde and of active matrix metalloproteinase (MMP) 9, a marker of blood–brain barrier disruption. The moderately sized URICOICTUS phase 2b trial showed that the addition of UA to thrombolytic therapy resulted in a 6 % absolute increase in the rate of excellent outcome at 90 days compared to placebo. The trial also showed that UA administration resulted in a significant increment of excellent outcome in patients with pretreatment hyperglycemia, in females and in patients with moderate strokes. Overall, the encouraging neuroprotective effects of UA therapy in acute ischemic stroke warrants further investigation in adequately powered clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004;555:589–606.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Anzai N, Jutabha P, Amonpatumrat-Takahashi S, Sakurai H. Recent advances in renal urate transport: characterization of candidate transporters indicated by genome-wide association studies. Clin Exp Nephrol. 2012;16:89–95.

    Article  PubMed  CAS  Google Scholar 

  3. Wu XW, Muzny DM, Lee CC, Caskey CT. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol. 1992;34:78–84.

    Article  PubMed  CAS  Google Scholar 

  4. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A. 1981;78:6858–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Santos CX, Anjos EI, Augusto O. Uric acid oxidation by peroxynitrite: multiple reactions, free radical formation, and amplification of lipid oxidation. Arch Biochem Biophys. 1999;372:285–94.

    Article  PubMed  CAS  Google Scholar 

  6. Gruber J, Tang SY, Jenner AM, Mudway I, Blomberg A, Behndig A, et al. Allantoin in human plasma, serum, and nasal-lining fluids as a biomarker of oxidative stress: avoiding artifacts and establishing real in vivo concentrations. Antioxid Redox Signal. 2009;11:1767–76.

    Article  PubMed  CAS  Google Scholar 

  7. Hong JM, Bang OY, Chung CS, Joo IS, Gwag BJ, Ovbiagele B. Influence of recanalization on uric acid patterns in acute ischemic stroke. Cerebrovasc Dis. 2010;29:431–9.

    Article  PubMed  CAS  Google Scholar 

  8. Ozkan Y, Yardim-Akaydin S, Imren E, Torun M, Simsek B. Increased plasma homocysteine and allantoin levels in coronary artery disease: possible link between homocysteine and uric acid oxidation. Acta Cardiol. 2006;61:432–9.

    Article  PubMed  Google Scholar 

  9. Kand’ar R, Zakova P. Allantoin as a marker of oxidative stress in human erythrocytes. Clin Chem Lab Med. 2008;46:1270–4.

    PubMed  Google Scholar 

  10. Becker BF. Towards the physiological function of uric acid. Free Radic Biol Med. 1993;14:615–31.

    Article  PubMed  CAS  Google Scholar 

  11. Squadrito GL, Cueto R, Splenser AE, Valavanidis A, Zhang H, Uppu RM, et al. Reaction of uric acid with peroxynitrite and implications for the mechanism of neuroprotection by uric acid. Arch Biochem Biophys. 2000;376:333–7.

    Article  PubMed  CAS  Google Scholar 

  12. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S. Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: implications for uncoupling endothelial nitric oxide synthase. Biochem Pharmacol. 2005;70:343–54.

    Article  PubMed  CAS  Google Scholar 

  13. Glantzounis GK, Tsimoyiannis EC, Kappas AM, Galaris DA. Uric acid and oxidative stress. Curr Pharm Des. 2005;11:4145–51.

    Article  PubMed  CAS  Google Scholar 

  14. Davis JW, Grandinetti A, Waslien CI, Ross GW, White LR, Morens DM. Observations on serum uric acid levels and the risk of idiopathic Parkinson’s disease. Am J Epidemiol. 1996;144:480–4.

    Article  PubMed  CAS  Google Scholar 

  15. Drulovic J, Dujmovic I, Stojsavljevic N, Mesaros S, Andjelkovic S, Miljkovic D, et al. Uric acid levels in sera from patients with multiple sclerosis. J Neurol. 2001;248:121–6.

    Article  PubMed  CAS  Google Scholar 

  16. Toncev G, Milicic B, Toncev S, Samardzic G. Serum uric acid levels in multiple sclerosis patients correlate with activity of disease and blood–brain barrier dysfunction. Eur J Neurol. 2002;9:221–6.

    Article  PubMed  CAS  Google Scholar 

  17. Liu B, Shen Y, Xiao K, Tang Y, Cen L, Wei J. Serum uric acid levels in patients with multiple sclerosis: a meta-analysis. Neurol Res. 2012;34:163–71.

    PubMed  CAS  Google Scholar 

  18. Ashtari F, Bahar M, Aghaei M, Zahed A. Serum uric acid level in patients with relapsing-remitting multiple sclerosis. J Clin Neurosci. 2013;20(5):676–8.

    Article  PubMed  CAS  Google Scholar 

  19. Knapp CM, Constantinescu CS, Tan JH, McLean R, Cherryman GR, Gottlob I. Serum uric acid levels in optic neuritis. Mult Scler. 2004;10:278–80.

    Article  PubMed  CAS  Google Scholar 

  20. Rinaldi P, Polidori MC, Metastasio A, Mariani E, Mattioli P, Cherubini A, et al. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol Aging. 2003;24:915–9.

    Article  PubMed  CAS  Google Scholar 

  21. Keizman D, Ish-Shalom M, Berliner S, Maimon N, Vered Y, Artamonov I, et al. Low uric acid levels in serum of patients with ALS: further evidence for oxidative stress? J Neurol Sci. 2009;285:95–9.

    Article  PubMed  CAS  Google Scholar 

  22. Paganoni S, Zhang M, Quiroz Zarate A, Jaffa M, Yu H, Cudkowicz ME, et al. Uric acid levels predict survival in men with amyotrophic lateral sclerosis. J Neurol. 2012;259:1923–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Scott GS, Hooper DC. The role of uric acid in protection against peroxynitrite-mediated pathology. Med Hypotheses. 2001;56:95–100.

    Article  PubMed  CAS  Google Scholar 

  24. Chamorro A, Planas AM, Muner DS, Deulofeu R. Uric acid administration for neuroprotection in patients with acute brain ischemia. Med Hypotheses. 2004;62:173–6.

    Article  PubMed  CAS  Google Scholar 

  25. Muraoka S, Miura T. Inhibition by uric acid of free radicals that damage biological molecules. Pharmacol Toxicol. 2003;93:284–9.

    Article  PubMed  CAS  Google Scholar 

  26. Kanellis J, Watanabe S, Li JH, Kang DH, Li P, Nakagawa T, et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension. 2003;41:1287–93.

    Article  PubMed  CAS  Google Scholar 

  27. Kang DH, Han L, Ouyang X, Kahn AM, Kanellis J, Li P, et al. Uric acid causes vascular smooth muscle cell proliferation by entering cells via a functional urate transporter. Am J Nephrol. 2005;25:425–33.

    Article  PubMed  CAS  Google Scholar 

  28. Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, et al. Hyperuricemia induces endothelial dysfunction. Kidney Int. 2005;67:1739–42.

    Article  PubMed  Google Scholar 

  29. Kang DH, Park SK, Lee IK, Johnson RJ. Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrol. 2005;16:3553–62.

    Article  PubMed  CAS  Google Scholar 

  30. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol. 2007;293:C584–96.

    Article  PubMed  CAS  Google Scholar 

  31. Kang DH, Nakagawa T, Feng L, Watanabe S, Han L, Mazzali M, et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol. 2002;13:2888–97.

    Article  PubMed  CAS  Google Scholar 

  32. Freedman DS, Williamson DF, Gunter EW, Byers T. Relation of serum uric acid to mortality and ischemic heart disease. The NHANES I Epidemiologic Follow-up Study. Am J Epidemiol. 1995;141:637–44.

    PubMed  CAS  Google Scholar 

  33. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971–1992. National Health and Nutrition Examination Survey. JAMA. 2000;283:2404–10.

    Article  PubMed  CAS  Google Scholar 

  34. Niskanen LK, Laaksonen DE, Nyyssonen K, Alfthan G, Lakka HM, Lakka TA, et al. Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study. Arch Intern Med. 2004;164:1546–51.

    Article  PubMed  CAS  Google Scholar 

  35. Bos MJ, Koudstaal PJ, Hofman A, Witteman JC, Breteler MM. Uric acid is a risk factor for myocardial infarction and stroke: the Rotterdam study. Stroke. 2006;37:1503–7.

    Article  PubMed  CAS  Google Scholar 

  36. Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359:1811–21.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Sautin YY, Johnson RJ. Uric acid: the oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids. 2008;27:608–19.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Proctor PH. Uric acid: neuroprotective or neurotoxic? Stroke. 2008;39:e88. author reply e89.

    Article  PubMed  CAS  Google Scholar 

  39. Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol. 2000;62:649–71.

    Article  PubMed  CAS  Google Scholar 

  40. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    Article  PubMed  CAS  Google Scholar 

  41. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA. Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci. 1998;18:8126–32.

    PubMed  CAS  Google Scholar 

  43. Whiteman M, Ketsawatsakul U, Halliwell B. A reassessment of the peroxynitrite scavenging activity of uric acid. Ann N Y Acad Sci. 2002;962:242–59.

    Article  PubMed  CAS  Google Scholar 

  44. Aoyama K, Matsumura N, Watabe M, Wang F, Kikuchi-Utsumi K, Nakaki T. Caffeine and uric acid mediate glutathione synthesis for neuroprotection. Neuroscience. 2011;181:206–15.

    Article  PubMed  CAS  Google Scholar 

  45. Du Y, Chen CP, Tseng CY, Eisenberg Y, Firestein BL. Astroglia-mediated effects of uric acid to protect spinal cord neurons from glutamate toxicity. Glia. 2007;55:463–72.

    Article  PubMed  Google Scholar 

  46. Yu ZF, Bruce-Keller AJ, Goodman Y, Mattson MP. Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J Neurosci Res. 1998;53:613–25.

    Article  PubMed  CAS  Google Scholar 

  47. Romanos E, Planas AM, Amaro S, Chamorro A. Uric acid reduces brain damage and improves the benefits of rt-PA in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab. 2007;27:14–20.

    Article  PubMed  CAS  Google Scholar 

  48. Hooper DC, Scott GS, Zborek A, Mikheeva T, Kean RB, Koprowski H, et al. Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood-CNS barrier permeability changes, and tissue damage in a mouse model of multiple sclerosis. FASEB J. 2000;14:691–8.

    PubMed  CAS  Google Scholar 

  49. Spitsin SV, Scott GS, Kean RB, Mikheeva T, Hooper DC. Protection of myelin basic protein immunized mice from free-radical mediated inflammatory cell invasion of the central nervous system by the natural peroxynitrite scavenger uric acid. Neurosci Lett. 2000;292:137–41.

    Article  PubMed  CAS  Google Scholar 

  50. Kean RB, Spitsin SV, Mikheeva T, Scott GS, Hooper DC. The peroxynitrite scavenger uric acid prevents inflammatory cell invasion into the central nervous system in experimental allergic encephalomyelitis through maintenance of blood-central nervous system barrier integrity. J Immunol. 2000;165:6511–8.

    Article  PubMed  CAS  Google Scholar 

  51. Scott GS, Cuzzocrea S, Genovese T, Koprowski H, Hooper DC. Uric acid protects against secondary damage after spinal cord injury. Proc Natl Acad Sci U S A. 2005;102:3483–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Lipton P. Ischemic cell death in neurons. Physiol Rev. 1999;79:1431–568.

    PubMed  CAS  Google Scholar 

  53. Fisher M, Bastan B. Identifying and utilizing the ischemic penumbra. Neurology. 2012;79(13 Suppl 1):S79–85.

    Article  PubMed  Google Scholar 

  54. Fukuyama N, Takizawa S, Ishida H, Hoshiai K, Shinohara Y, Nakazawa H. Peroxynitrite formation in focal cerebral ischemia-reperfusion in rats occurs predominantly in the peri-infarct region. J Cereb Blood Flow Metab. 1998;18:123–955.

    Article  PubMed  CAS  Google Scholar 

  55. Morimoto T, Globus MY, Busto R, Martinez E, Ginsberg MD. Simultaneous measurement of salicylate hydroxylation and glutamate release in the penumbral cortex following transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab. 1996;16:92–9.

    Article  PubMed  CAS  Google Scholar 

  56. Berkhemer OA, Fransen PS, Beumer D, van den Berg D, Lingsma HF, Yoo AJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372:11–20.

    Article  PubMed  Google Scholar 

  57. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JM, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372:1019–30.

    Article  PubMed  CAS  Google Scholar 

  58. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372:1009–18.

    Article  PubMed  CAS  Google Scholar 

  59. Saver JL, Goyal M, Bonafe A, Diener HC, Levy E, Pereira VM, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372:2285–95.

    Article  PubMed  CAS  Google Scholar 

  60. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372:2296–306.

    Article  PubMed  CAS  Google Scholar 

  61. Schaller B, Graf R. Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab. 2004;24:351–71.

    Article  PubMed  Google Scholar 

  62. Fabian RH, DeWitt DS, Kent TA. In vivo detection of superoxide anion production by the brain using a cytochrome c electrode. J Cereb Blood Flow Metab. 1995;15:242–7.

    Article  PubMed  CAS  Google Scholar 

  63. Crack PJ, Taylor JM. Reactive oxygen species and the modulation of stroke. Free Radic Biol Med. 2005;38:1433–44.

    Article  PubMed  CAS  Google Scholar 

  64. Pfefferkorn T, Rosenberg GA. Closure of the blood–brain barrier by matrix metalloproteinase inhibition reduces rtPA-mediated mortality in cerebral ischemia with delayed reperfusion. Stroke. 2003;34:2025–30.

    Article  PubMed  Google Scholar 

  65. Gasche Y, Copin JC, Sugawara T, Fujimura M, Chan PH. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood–brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2001;21:1393–400.

    Article  PubMed  CAS  Google Scholar 

  66. Amaro S, Chamorro A. Translational stroke research of the combination of thrombolysis and antioxidant therapy. Stroke. 2011;42:1495–9.

    Article  PubMed  CAS  Google Scholar 

  67. Weir CJ, Muir SW, Walters MR, Lees KR. Serum urate as an independent predictor of poor outcome and future vascular events after acute stroke. Stroke. 2003;34:1951–6.

    Article  PubMed  Google Scholar 

  68. Karagiannis A, Mikhailidis DP, Tziomalos K, Sileli M, Savvatianos S, Kakafika A, et al. Serum uric acid as an independent predictor of early death after acute stroke. Circ J. 2007;71:1120–7.

    Article  PubMed  CAS  Google Scholar 

  69. Chiquete E, Ruiz-Sandoval JL, Murillo-Bonilla LM, Arauz A, Orozco-Valera DR, Ochoa-Guzman A, et al. Serum uric acid and outcome after acute ischemic stroke: PREMIER study. Cerebrovasc Dis. 2013;35:168–74.

    Article  PubMed  CAS  Google Scholar 

  70. Chamorro A, Obach V, Cervera A, Revilla M, Deulofeu R, Aponte JH. Prognostic significance of uric acid serum concentration in patients with acute ischemic stroke. Stroke. 2002;33:1048–52.

    Article  PubMed  CAS  Google Scholar 

  71. Amaro S, Urra X, Gomez-Choco M, Obach V, Cervera A, Vargas M, et al. Uric acid levels are relevant in patients with stroke treated with thrombolysis. Stroke. 2011;42:S28–32.

    Article  PubMed  CAS  Google Scholar 

  72. Logallo N, Naess H, Idicula TT, Brogger J, Waje-Andreassen U, Thomassen L. Serum uric acid: neuroprotection in thrombolysis. The Bergen NORSTROKE study. BMC Neurol. 2011;11:114.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Dawson J, Lees KR, Weir CJ, Quinn T, Ali M, Hennerici MG, et al. Baseline serum urate and 90-day functional outcomes following acute ischemic stroke. Cerebrovasc Dis. 2009;28:202–3.

    Article  PubMed  Google Scholar 

  74. Miedema I, Uyttenboogaart M, Koch M, Kremer B, de Keyser J, Luijckx GJ. Lack of association between serum uric acid levels and outcome in acute ischemic stroke. J Neurol Sci. 2012;319:51–5.

    Article  PubMed  CAS  Google Scholar 

  75. Seet RC, Kasiman K, Gruber J, Tang SY, Wong MC, Chang HM, et al. Is uric acid protective or deleterious in acute ischemic stroke? A prospective cohort study. Atherosclerosis. 2010;209:215–9.

    Article  PubMed  CAS  Google Scholar 

  76. Wang Z, Lin Y, Liu Y, Chen Y, Wang B, Li C, et al. Serum uric acid levels and outcomes after acute ischemic stroke. [published online ahead of print March 7, 2015] Mol Neurobiol 2015. http://www.ncbi.nlm.nih.gov/pubmed/25744569. Accessed April 27 2015. This systematic meta-analysis includes 8131 patients from 10 different studies. The results support that serum uric acid concentration at onset is a useful biomarker of outcome after stroke and that high uric acid levels show a protective effect on neurological outcome after acute ischemic stroke.

  77. Amaro S, Planas AM, Chamorro A. Uric acid administration in patients with acute stroke: a novel approach to neuroprotection. Expert Rev Neurother. 2008;8:259–70.

    Article  PubMed  CAS  Google Scholar 

  78. Gariballa SE, Hutchin TP, Sinclair AJ. Antioxidant capacity after acute ischaemic stroke. QJM. 2002;95:685–90.

    Article  PubMed  CAS  Google Scholar 

  79. Amaro S, Soy D, Obach V, Cervera A, Planas AM, Chamorro A. A pilot study of dual treatment with recombinant tissue plasminogen activator and uric acid in acute ischemic stroke. Stroke. 2007;38:2173–5.

    Article  PubMed  CAS  Google Scholar 

  80. Brouns R, Wauters A, Van De Vijver G, De Surgeloose D, Sheorajpanday R, De Deyn PP. Decrease in uric acid in acute ischemic stroke correlates with stroke severity, evolution and outcome. Clin Chem Lab Med. 2010;48:383–90.

    Article  PubMed  CAS  Google Scholar 

  81. Ma YH, Su N, Chao XD, Zhang YQ, Zhang L, Han F, et al. Thioredoxin-1 attenuates post-ischemic neuronal apoptosis via reducing oxidative/nitrative stress. Neurochem Int. 2012;60:475–83. Ma YH et al. conducted an experimental study in mice subjected to cerebral ischemia. The results showed that thioredoxin-1 and uric acid diminish peroxinitrite and superoxide anion formation resulting in an antioxidative/antinitrative effect and a reduction of apoptotic cell death and infarct size.

    Article  PubMed  CAS  Google Scholar 

  82. Haberman F, Tang SC, Arumugam TV, Hyun DH, Yu QS, Cutler RG, et al. Soluble neuroprotective antioxidant uric acid analogs ameliorate ischemic brain injury in mice. Neuromol Med. 2007;9:315–23.

    Article  CAS  Google Scholar 

  83. Onetti Y, Dantas AP, Pérez B, Cugota R, Chamorro A, Planas AM, et al. Middle cerebral artery remodeling following transient brain ischemia is linked to early postischemic hyperemia: a target of uric acid treatment. Am J Physiol Heart Circ Physiol. 2015;308(8):H862–74. In this experimental study in hyperemic rats, Onetti Y et al. showed that UA administration reduces infarct volume and improves clinical outcome after stroke. The main mechanisms suggested for this neuroprotective effect are the inhibition of middle cerebral artery remodeling. The effect on brain vessels observed in this study identifies a novel potential therapeutic target of uric acid after ischemic stroke.

    Article  PubMed  CAS  Google Scholar 

  84. Recommendations for clinical trial evaluation of acute stroke therapies. Stroke 2001; 32:1598–1606.

  85. Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinases and blood–brain barrier disruption in acute ischemic stroke. Front Neurol. 2013;4:32.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Amaro S, Obach V, Cervera A, Urra X, Gomez-Choco M, Planas AM, et al. Course of matrix metalloproteinase-9 isoforms after the administration of uric acid in patients with acute stroke: a proof-of-concept study. J Neurol. 2009;256:651–6.

    Article  PubMed  CAS  Google Scholar 

  87. Chamorro A, Amaro S, Castellanos M, Segura T, Arenillas J, Martí-Fábregas J, et al. Safety and efficacy of uric acid in patients with acute stroke (URICO-ICTUS): a randomized, double-blind, phase 2b/3 trial. Lancet Neurol. 2014;13:453–60. This randomized placebo-controlled clinical trial included 420 patients from 10 comprehensive stroke centers. Uric acid administration showed no safety concerns and increased the rate of excellent outcome in treated patients compared to the placebo group.

    Article  PubMed  CAS  Google Scholar 

  88. Dungan KM, Braithwaite SS, Preiser JC. Stress hyperglycemia. Lancet. 2009;373:1798–807.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Robbins NM, Swanson RA. Opposing effects of glucose on stroke and reperfusion injury: acidosis, oxidative stress, and energy metabolism. Stroke. 2014;45:1881–6. This is an extensive summary of the mechanisms by which hyperglycemia can exacerbate brain injury in the acute stroke setting based on clinical observations and the results of the most relevant clinical trials addressing this topic.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Suh SW, Shin BS, Ma H, Van Hoecke M, Brennan AM, Yenari MA, et al. Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol. 2008;64:654–63.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Amaro S, Llull L, Renú A, Laredo C, Perez B, Vila E, et al. Uric acid improves glucose-driven oxidative stress in human ischemic stroke. Ann Neurol. 2015;77:775–83. This re-analysis of the URICO-ICTUS data evaluated the role of hyperglycemia on the neuroprotective effect of uric acid in acute ischemic stroke patients treated with alteplase. The results showed that administration of UA is more effective in hyperglycemic patients and patients with early arterial recanalization.

    Article  PubMed  CAS  Google Scholar 

  92. Llull L, Laredo C, Renú A, Perez B, Vila E, Obach V, et al. Uric acid therapy improves clinical outcome in women with acute ischemic stroke. Stroke. 2015. In press. This re-analysis of the URICO-ICTUS data evaluated the role of sex on the neuroprotective effect of uric acid administration together with alteplase in acute ischemic stroke patients. The results showed that UA is more effective than placebo in improving clinical outcome and limiting infarct growth in women than in men.

  93. Reeves MJ, Bushnell CD, Howard G, Gargano JW, Duncan PW, Lynch G, et al. Sex differences in stroke: epidemiology, clinical presentation, medical care, and outcomes. Lancet Neurol. 2008;7(10):915–26.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Campbell BC, Davis SM, Donnan GA. Uric acid for stroke: glimmer of hope or false dawn? Lancet Neurol. 2014;13(5):440–1.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Chamorro.

Ethics declarations

Conflict of Interest

Laura Llull and Sergio Amaro declare that they have no conflict of interest. Ángel Chamorro is inventor of the patent “Pharmaceutical composition for neuroprotective treatment in patients with ictus comprising citicoline and uric acid” and whose proprietor is Hospital Clinic in Provincial of Barcelona, Spain.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llull, L., Amaro, S. & Chamorro, Á. Administration of Uric Acid in the Emergency Treatment of Acute Ischemic Stroke. Curr Neurol Neurosci Rep 16, 4 (2016). https://doi.org/10.1007/s11910-015-0604-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0604-7

Keywords

Navigation