Skip to main content

Advertisement

Log in

Recent Innovations in Diagnosis and Treatment of Pediatric Tuberculosis

Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Tuberculosis is leading cause of global morbidity and mortality and a significant proportion of the burden of disease occurs in children. In the past 5 years, a number of innovations have improved the diagnosis and treatment for children with both latent tuberculosis infection and active disease.

Recent Findings

This review discusses three key areas of innovation. First, we assess utilization and performance of interferon-gamma release assays (IGRAs) in different clinical and epidemiologic scenarios. Recent literature has demonstrated good performance of IGRAs for diagnosis of latent tuberculosis infection, particularly in low-incidence settings such as TB control programs in North America. For high-incidence populations, or when testing is done for possible active TB disease, IGRA performance has some important limitations, but IGRA sensitivity when measured against culture proven disease may be better than earlier studies suggested. The second area of innovation is in increased uptake of nucleic acid amplification (NAA) tests and broader application in non-sputum samples for both pediatric pulmonary and extrapulmonary tuberculosis. Finally, recent studies have provided solid evidence in support of shorter treatment courses for pediatric latent tuberculosis infection, such as 12 weeks of weekly isoniazid and rifapentine or 4 months daily rifampin, that improve compliance and may reduce resources required for TB control.

Summary

Many recent innovations in pediatric tuberculosis relate to an improved understanding of how to optimally use existing tests and treatments. Until diagnostic tests and interventions such as vaccination are developed that can dramatically alter the paradigm of pediatric TB management and control, it is important for stakeholders to have a nuanced understanding of tools currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Houben RM, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 2016;13(10):e1002152.

    Article  Google Scholar 

  2. World Health Organization. Global Tuberculosis Report 2018. Geneva. World Health Organization; 2018.

  3. Marais BJ, Gie RP, Schaaf HS, Hesseling AC, Obihara CC, Starke JJ, et al. The natural history of childhood intra-thoracic tuberculosis: a critical review of literature from the pre-chemotherapy era. Int J Tuberc Lung Dis. 2004;8(4):392–402.

    CAS  PubMed  Google Scholar 

  4. Vynnycky E, Fine PE. Lifetime risks, incubation period, and serial interval of tuberculosis. Am J Epidemiol. 2000;152(3):247–63.

    Article  CAS  Google Scholar 

  5. Trauer JM, Moyo N, Tay EL, Dale K, Ragonnet R, McBryde ES, et al. Risk of Active Tuberculosis in the Five Years Following Infection . . . 15%? Chest. 2016;149(2):516–25.

    Article  Google Scholar 

  6. Cruz AT, Starke JR. Clinical manifestations of tuberculosis in children. Paediatr Respir Rev. 2007;8(2):107–17.

    Article  Google Scholar 

  7. Swingler GH, du Toit G, Andronikou S, van der Merwe L, Zar HJ. Diagnostic accuracy of chest radiography in detecting mediastinal lymphadenopathy in suspected pulmonary tuberculosis. Arch Dis Child. 2005;90(11):1153–6.

    Article  CAS  Google Scholar 

  8. Kampmann B, Whittaker E. Immunology of tuberculosis in children. In: Starke JR, Donald PR, editors. Handbook of Child & Adolescent Tuberculosis. New York, NY, USA: Oxford University Press; 2016. p. 31–46.

    Google Scholar 

  9. Chiang SS, Swanson DS, Starke JR. New diagnostics for childhood tuberculosis. Infect Dis Clin N Am. 2015;29(3):477–502.

    Article  Google Scholar 

  10. Graham SM. Treatment of paediatric TB: revised WHO guidelines. Paediatr Respir Rev. 2011;12(1):22–6.

    Article  Google Scholar 

  11. Ivanovska V, Rademaker CM, van Dijk L, Mantel-Teeuwisse AK. Pediatric drug formulations: a review of challenges and progress. Pediatrics. 2014;134(2):361–72.

    Article  Google Scholar 

  12. Zar HJ, Tannenbaum E, Apolles P, Roux P, Hanslo D, Hussey G. Sputum induction for the diagnosis of pulmonary tuberculosis in infants and young children in an urban setting in South Africa. Arch Dis Child. 2000;82(4):305–8.

    Article  CAS  Google Scholar 

  13. Oberhelman RA, Soto-Castellares G, Gilman RH, Caviedes L, Castillo ME, Kolevic L, et al. Diagnostic approaches for paediatric tuberculosis by use of different specimen types, culture methods, and PCR: a prospective case-control study. Lancet Infect Dis. 2010;10(9):612–20.

    Article  Google Scholar 

  14. Cruz AT, Revell PA, Starke JR. Gastric aspirate yield for children with suspected pulmonary tuberculosis. J Pediatric Infect Dis Soc. 2013;2(2):171–4.

    Article  Google Scholar 

  15. Mantoux C. Intra-dermo-réaction de la tuberculine. C R Acad Sci. 1908;147:355–7.

    Google Scholar 

  16. Mandalakas AM, DiNardo A. Diagnosis of tuberculosis infection in children. In: Starke JR, Donald PR, editors. Handbook of Child & Adolescent Tuberculosis. New York, NY: Oxford University Press; 2016. p. 79–96.

    Google Scholar 

  17. Grinsdale JA, Islam S, Tran OC, Ho CS, Kawamura LM, Higashi JM. Interferon-gamma release assays and pediatric public health tuberculosis screening: the San Francisco program experience 2005 to 2008. J Pediatric Infect Dis Soc. 2016;5(2):122–30.

    Article  Google Scholar 

  18. Gaensbauer J, Gonzales B, Belknap R, Wilson ML, O’Connor ME. Interferon-gamma release assay-based screening for pediatric latent tuberculosis infection in an urban primary care network. J Pediatr. 2018;200:202–9.

    Article  Google Scholar 

  19. Young J, Edick T, Klee D, O'Connor ME. Successful treatment of pediatric latent tuberculosis infection in a community health center clinic. Pediatr Infect Dis J. 2012;31(9):e147–51.

    Article  Google Scholar 

  20. Young J, O’Connor ME. Risk factors associated with latent tuberculosis infection in Mexican American children. Pediatrics. 2005;115(6):e647–53.

    Article  Google Scholar 

  21. American Academy of Pediatrics. Tuberculosis. In: Kimberlin D, ed. Red Book. 2018–2021 Report of the Committee on Infectious Diseases. 31st ed. Itasca, IL: American Academy of Pediatrics; 2018:829–853.

  22. Gaensbauer J, Belknap R, Lain B, Newman A, Assmann J, Haas M. Interferon-gamma release assay testing in children under 2 at a US Tuberculosis Clinic. Poster session presented at: International Union Against Tuberculosis and Lung Disease, 2019 North American Region Conference; February 21, 2019, 2019; Vancouver, BC, Canada.

  23. World Health Organization. Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. Geneva: World Health Organization; 2018.

  24. Sun L, Xiao J, Miao Q, Feng WX, Wu XR, Yin QQ, et al. Interferon gamma release assay in diagnosis of pediatric tuberculosis: a meta-analysis. FEMS Immunol Med Microbiol. 2011;63(2):165–73.

    Article  CAS  Google Scholar 

  25. Mandalakas AM, Detjen AK, Hesseling AC, Benedetti A, Menzies D. Interferon-gamma release assays and childhood tuberculosis: systematic review and meta-analysis. Int J Tuberc Lung Dis. 2011;15(8):1018–32.

    Article  CAS  Google Scholar 

  26. Chiappini E, Accetta G, Bonsignori F, Boddi V, Galli L, Biggeri A, et al. Interferon-gamma release assays for the diagnosis of Mycobacterium tuberculosis infection in children: a systematic review and meta-analysis. Int J Immunopathol Pharmacol. 2012;25(3):557–64.

    Article  CAS  Google Scholar 

  27. Machingaidze S, Wiysonge CS, Gonzalez-Angulo Y, Hatherill M, Moyo S, Hanekom W, et al. The utility of an interferon gamma release assay for diagnosis of latent tuberculosis infection and disease in children: a systematic review and meta-analysis. Pediatr Infect Dis J. 2011;30(8):694–700.

    Article  Google Scholar 

  28. •• Laurenti P, Raponi M, de Waure C, Marino M, Ricciardi W, Damiani G. Performance of interferon-gamma release assays in the diagnosis of confirmed active tuberculosis in immunocompetent children: a new systematic review and meta-analysis. BMC Infect Dis. 2016;16:131 Important meta-analysis demonstrating relatively high sensitivity of IGRAs in diagnosis of culture-proven pediatric tuberculosis.

    Article  Google Scholar 

  29. • Kay AW, Islam SM, Wendorf K, Westenhouse J, Barry PM. Interferon-gamma release assay performance for tuberculosis in childhood. Pediatrics. 2018;141(6):e20173918 A large, retrospective analysis demonstrating good performance of IGRAs to diagnose tuberculosis in a US-based TB control program.

    Article  Google Scholar 

  30. Critselis E, Amanatidou V, Syridou G, Spyridis NP, Mavrikou M, Papadopoulos NG, et al. The effect of age on whole blood interferon-gamma release assay response among children investigated for latent tuberculosis infection. J Pediatr. 2012;161(4):632–8.

    Article  CAS  Google Scholar 

  31. Bui DH, Cruz AT, Graviss EA. Indeterminate QuantiFERON-TB gold in-tube assay results in children: possible association with procedural specimen collection. Pediatr Infect Dis J. 2014;33(2):220–2.

    Article  Google Scholar 

  32. Helb D, Jones M, Story E, Boehme C, Wallace E, Ho K, et al. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol. 2010;48(1):229–37.

    Article  CAS  Google Scholar 

  33. Blakemore R, Story E, Helb D, Kop J, Banada P, Owens MR, et al. Evaluation of the analytical performance of the Xpert MTB/RIF assay. J Clin Microbiol. 2010;48(7):2495–501.

    Article  CAS  Google Scholar 

  34. • World Health Organization. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children. Policy update. Geneva: World Health Organization: 2013. Though 5 years old now, this comprehensive WHO commissioned review of Xpert MTB/RIF remains highly relevant and guides global policy on the use of these assays in children.

  35. Pang Y, Wang Y, Zhao S, Liu J, Zhao Y, Li H. Evaluation of the Xpert MTB/RIF assay in gastric lavage aspirates for diagnosis of smear-negative childhood pulmonary tuberculosis. Pediatr Infect Dis J. 2014;33(10):1047–51.

    Article  Google Scholar 

  36. Walters E, Goussard P, Bosch C, Hesseling AC, Gie RP. GeneXpert MTB/RIF on bronchoalveolar lavage samples in children with suspected complicated intrathoracic tuberculosis: a pilot study. Pediatr Pulmonol. 2014;49(11):1133–7.

    Article  Google Scholar 

  37. Bunyasi EW, Tameris M, Geldenhuys H, Schmidt BM, Luabeya AKK, Mulenga H, et al. Evaluation of Xpert(R) MTB/RIF assay in induced sputum and gastric lavage samples from young children with suspected tuberculosis from the MVA85A TB vaccine trial. PLoS One. 2015;10(11):e0141623.

    Article  Google Scholar 

  38. Kohli M, Schiller I, Dendukuri N, et al. Xpert((R)) MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resistance. Cochrane Database Syst Rev. 2018;8:CD012768.

    PubMed  Google Scholar 

  39. Bhatia R, Dayal R, Jindal S, Agarwal D, Goyal A. GeneXpert for diagnosis of tubercular meningitis. Indian J Pediatr. 2016;83(11):1353–5.

    Article  Google Scholar 

  40. Sharma S, Dahiya B, Sreenivas V, Singh N, Raj A, Sheoran A, et al. Comparative evaluation of GeneXpert MTB/RIF and multiplex PCR targeting mpb64 and IS6110 for the diagnosis of pleural TB. Future Microbiol. 2018;13:407–13.

    Article  CAS  Google Scholar 

  41. DiNardo AR, Kay AW, Maphalala G, et al. Diagnostic and treatment monitoring potential of a stool-based quantitative polymerase chain reaction assay for pulmonary tuberculosis. Am J Trop Med Hyg. 2018;99(2):310–6.

    Article  CAS  Google Scholar 

  42. Chipinduro M, Mateveke K, Makamure B, Ferrand RA, Gomo E. Stool Xpert((R)) MTB/RIF test for the diagnosis of childhood pulmonary tuberculosis at primary clinics in Zimbabwe. Int J Tuberc Lung Dis. 2017;21(2):161–6.

    Article  CAS  Google Scholar 

  43. Orikiriza P, Nansumba M, Nyehangane D, Bastard M, Mugisha IT, Nansera D, et al. Xpert MTB/RIF diagnosis of childhood tuberculosis from sputum and stool samples in a high TB-HIV-prevalent setting. Eur J Clin Microbiol Infect Dis. 2018;37(8):1465–73.

    Article  Google Scholar 

  44. Walters E, van der Zalm MM, Palmer M, Bosch C, Demers AM, Draper H, et al. Xpert MTB/RIF on stool is useful for the rapid diagnosis of tuberculosis in young children with severe pulmonary disease. Pediatr Infect Dis J. 2017;36(9):837–43.

    Article  Google Scholar 

  45. Marcy O, Ung V, Goyet S, Borand L, Msellati P, Tejiokem M, et al. Performance of Xpert MTB/RIF and alternative specimen collection methods for the diagnosis of tuberculosis in HIV-infected children. Clin Infect Dis. 2016;62(9):1161–8.

    Article  CAS  Google Scholar 

  46. World Health Organization. Global Tuberculosis Report 2016. Geneva 2016.

  47. Sterling TR, Villarino ME, Borisov AS, Shang N, Gordin F, Bliven-Sizemore E, et al. Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med. 2011;365(23):2155–66.

    Article  CAS  Google Scholar 

  48. Njie GJ, Morris SB, Woodruff RY, Moro RN, Vernon AA, Borisov AS. Isoniazid-rifapentine for latent tuberculosis infection: a systematic review and meta-analysis. Am J Prev Med. 2018;55(2):244–52.

    Article  Google Scholar 

  49. Bliven-Sizemore EE, Sterling TR, Shang N, Benator D, Schwartzman K, Reves R, et al. Three months of weekly rifapentine plus isoniazid is less hepatotoxic than nine months of daily isoniazid for LTBI. Int J Tuberc Lung Dis. 2015;19(9):1039–44 i-v.

    Article  CAS  Google Scholar 

  50. •• Villarino ME, Scott NA, Weis SE, et al. Treatment for preventing tuberculosis in children and adolescents: a randomized clinical trial of a 3-month, 12-dose regimen of a combination of rifapentine and isoniazid. JAMA Pediatr. 2015;169(3):247–55 High-quality, multi-center, randomized clinical trial demonstrating safety, tolerance and efficacy of a shorter regimen for latent tuberculosis infection.

    Article  Google Scholar 

  51. Borisov AS, Bamrah Morris S, Njie GJ, Winston CA, Burton D, Goldberg S, et al. Update of recommendations for use of once-weekly isoniazid-rifapentine regimen to treat latent mycobacterium tuberculosis infection. MMWR Morb Mortal Wkly Rep. 2018;67(25):723–6.

    Article  Google Scholar 

  52. Belknap R, Holland D, Feng PJ, Millet JP, Caylà JA, Martinson NA, et al. Self-administered versus directly observed once-weekly isoniazid and rifapentine treatment of latent tuberculosis infection: a randomized trial. Ann Intern Med. 2017;167(10):689–97.

    Article  Google Scholar 

  53. Marais BJ. Twelve-dose drug regimen now also an option for preventing tuberculosis in children and adolescents. JAMA Pediatr. 2015;169(3):208–10.

    Article  Google Scholar 

  54. Sharma SK, Sharma A, Kadhiravan T, Tharyan P. Rifamycins (rifampicin, rifabutin and rifapentine) compared to isoniazid for preventing tuberculosis in HIV-negative people at risk of active TB. Cochrane Database Syst Rev. 2013;7:CD007545.

    Google Scholar 

  55. Villarino ME, Ridzon R, Weismuller PC, Elcock M, Maxwell RM, Meador J, et al. Rifampin preventive therapy for tuberculosis infection: experience with 157 adolescents. Am J Respir Crit Care Med. 1997;155(5):1735–8.

    Article  CAS  Google Scholar 

  56. Cruz AT, Starke JR. Safety and completion of a 4-month course of rifampicin for latent tuberculous infection in children. Int J Tuberc Lung Dis. 2014;18(9):1057–61.

    Article  CAS  Google Scholar 

  57. Page KR, Sifakis F, Montes de Oca R, et al. Improved adherence and less toxicity with rifampin vs isoniazid for treatment of latent tuberculosis: a retrospective study. Arch Intern Med. 2006;166(17):1863–70.

    Article  CAS  Google Scholar 

  58. Menzies D, Long R, Trajman A, Dion MJ, Yang J, al Jahdali H, et al. Adverse events with 4 months of rifampin therapy or 9 months of isoniazid therapy for latent tuberculosis infection: a randomized trial. Ann Intern Med. 2008;149(10):689–97.

    Article  Google Scholar 

  59. Gaensbauer J, Aiona K, Haas M, Reves R, Young J, Belknap R. Better completion of pediatric latent tuberculosis treatment using 4 months of rifampin in a US-based tuberculosis clinic. Pediatr Infect Dis J. 2018;37(3):224–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Gaensbauer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Infectious Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaensbauer, J., Broadhurst, R. Recent Innovations in Diagnosis and Treatment of Pediatric Tuberculosis. Curr Infect Dis Rep 21, 4 (2019). https://doi.org/10.1007/s11908-019-0662-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-019-0662-0

Keywords

Navigation