Skip to main content

Advertisement

Log in

Current Approaches to Quantifying Tonic and Reflex Autonomic Outflows Controlling Cardiovascular Function in Humans and Experimental Animals

  • Hypertension and the Kidney (RM Carey, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The role of the autonomic nervous system in the pathophysiology of human and experimental models of cardiovascular disease is well established. In the recent years, there have been some rapid developments in the diagnostic approaches used to assess and monitor autonomic functions. Although most of these methods are devoted for research purposes in laboratory animals, many have still found their way to routine clinical practice. To name a few, direct long-term telemetry recording of sympathetic nerve activity (SNA) in rodents, single-unit SNA recording using microneurography in human subjects and spectral analysis of blood pressure and heart rate in both humans and animals have recently received an overwhelming attention. In this article, we therefore provide an overview of the methods and techniques used to assess tonic and reflex autonomic functions in humans and experimental animals, highlighting current advances available and procedure description, limitations and usefulness for diagnostic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jänig W, Jänig W. The autonomic nervous system: functional anatomy and visceral afferents. The integrative action of the autonomic nervous system. Cambridge University Press; 2006

  2. Robertson D, Biaggioni I. Primer on the autonomic nervous system. San Diego: Academic; 2012.

    Google Scholar 

  3. Cunha RS, Cabral AM, Vasquez EC. Evidence that the autonomic nervous system plays a major role in the L-NAME-induced hypertension in conscious rats. Am J Hypertens. 1993;6(9):806–9.

    CAS  PubMed  Google Scholar 

  4. Ferrari A, Gordon FJ, Mark AL. Impairment of cardiopulmonary baroreflexes in Dahl salt-sensitive rats fed low salt. Am J Physiol. 1984;247(1 Pt 2):H119–23.

    CAS  PubMed  Google Scholar 

  5. Hart EC, McBryde FD, Burchell AE, Ratcliffe LE, Stewart LQ, Baumbach A, et al. Translational examination of changes in baroreflex function after renal denervation in hypertensive rats and humans. Hypertension. 2013;62(3):533–41. doi:10.1161/hypertensionaha.113.01261.

    Article  CAS  PubMed  Google Scholar 

  6. Hering D, Marusic P, Walton AS, Lambert EA, Krum H, Narkiewicz K, et al. Sustained sympathetic and blood pressure reduction 1 year after renal denervation in patients with resistant hypertension. Hypertension. 2014. doi:10.1161/hypertensionaha.113.03098.

    PubMed  Google Scholar 

  7. Ramchandra R, Hood SG, Denton DA, Woods RL, McKinley MJ, McAllen RM, et al. Basis for the preferential activation of cardiac sympathetic nerve activity in heart failure. Proc Natl Acad Sci U S A. 2009;106(3):924–8. doi:10.1073/pnas.0811929106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ramchandra R, Hood SG, Frithiof R, McKinley MJ, May CN. The role of the paraventricular nucleus of the hypothalamus in the regulation of cardiac and renal sympathetic nerve activity in conscious normal and heart failure sheep. J Physiol. 2013;591(Pt 1):93–107. doi:10.1113/jphysiol.2012.236059.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. de Ferrari GM, Vanoli E, Stramba-Badiale M, Hull Jr SS, Foreman RD, Schwartz PJ. Vagal reflexes and survival during acute myocardial ischemia in conscious dogs with healed myocardial infarction. Am J Physiol. 1991;261(1 Pt 2):H63–9.

    PubMed  Google Scholar 

  10. DiBona GF, Sawin LL. Reflex regulation of renal nerve activity in cardiac failure. Am J Physiol. 1994;266(1 Pt 2):R27–39.

    CAS  PubMed  Google Scholar 

  11. Jones CM, Quinn MS, Minisi AJ. Reflex control of sympathetic outflow and depressed baroreflex sensitivity following myocardial infarction. Auton Neurosci. 2008;141(1-2):46–53.

    Article  PubMed  Google Scholar 

  12. Gouty S, Regalia J, Helke CJ. Attenuation of the afferent limb of the baroreceptor reflex in streptozotocin-induced diabetic rats. Auton Neurosci. 2001;89(1-2):86–95. doi:10.1016/s1566-0702(01)00256-9.

    Article  CAS  PubMed  Google Scholar 

  13. Gu H, Zhang ZH, Epstein PN, Li L, Harden SW, Wurster RD, et al. Impaired baroreflex control of renal sympathetic nerve activity in type 1 diabetic mice (OVE26). Neuroscience. 2009;161(1):78–85.

    Article  CAS  PubMed  Google Scholar 

  14. Salman IM, Ameer OZ, Sattar MA, Abdullah NA, Yam MF, Abdullah GZ, et al. Renal sympathetic nervous system hyperactivity in early streptozotocin-induced diabetic kidney disease. Neurourol Urodyn. 2011;30(3):438–46. doi:10.1002/nau.21007.

    Article  PubMed  Google Scholar 

  15. D’Angelo G, Mintz JD, Tidwell JE, Schreihofer AM, Pollock DM, Stepp DW. Exaggerated cardiovascular stress responses and impaired beta-adrenergic-mediated pressor recovery in obese Zucker rats. Hypertension. 2006;48(6):1109–15. doi:10.1161/01.HYP.0000247306.53547.d4.

    Article  PubMed  CAS  Google Scholar 

  16. Huber DA, Schreihofer AM. Attenuated baroreflex control of sympathetic nerve activity in obese Zucker rats by central mechanisms. J Physiol. 2010;588(Pt 9):1515–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Schreihofer AM, Mandel DA, Mobley SC, Stepp DW. Impairment of sympathetic baroreceptor reflexes in obese Zucker rats. Am J Physiol Heart Circ Physiol. 2007;293(4):17.

    Article  CAS  Google Scholar 

  18. Muntzel MS, Al-Naimi OA, Barclay A, Ajasin D. Cafeteria diet increases fat mass and chronically elevates lumbar sympathetic nerve activity in rats. Hypertension. 2012;60(6):1498–502. doi:10.1161/hypertensionaha.112.194886.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hering D, Zdrojewski Z, Krol E, Kara T, Kucharska W, Somers VK, et al. Tonic chemoreflex activation contributes to the elevated muscle sympathetic nerve activity in patients with chronic renal failure. J Hypertens. 2007;25(1):157–61. doi:10.1097/HJH.0b013e3280102d92.

    Article  CAS  PubMed  Google Scholar 

  20. Hildreth CM, Kandukuri DS, Goodchild AK, Phillips JK. Temporal development of baroreceptor dysfunction in a rodent model of chronic kidney disease. Clin Exp Pharmacol Physiol. 2013;40(7):458–65.

    Article  CAS  PubMed  Google Scholar 

  21. Neumann J, Ligtenberg G, Klein IH, Boer P, Oey PL, Koomans HA, et al. Sympathetic hyperactivity in hypertensive chronic kidney disease patients is reduced during standard treatment. Hypertension. 2007;49(3):506–10. doi:10.1161/01.HYP.0000256530.39695.a3.

    Article  CAS  PubMed  Google Scholar 

  22. Salman IM, Hildreth CM, Ameer OZ, Phillips JK. Differential contribution of afferent and central pathways to the development of baroreflex dysfunction in chronic kidney disease. Hypertension. 2014;63(4):804–10. doi:10.1161/hypertensionaha.113.02110.

    Article  CAS  PubMed  Google Scholar 

  23. Schlaich MP, Lambert EA, Sobotka PA, Lambert GW, Esler MD. Sympathetic hyperactivity in hypertensive chronic kidney disease patients is reduced during standard treatment. Hypertension. 2007;49(5):e27; author reply e8. doi:10.1161/hypertensionaha.107.087908.

  24. Salman IM. Cardiovascular autonomic dysfunction in chronic kidney disease: a comprehensive review. Curr Hypertens Rep. 2015;17(8):59. doi:10.1007/s11906-015-0571-z.

    Article  PubMed  Google Scholar 

  25. Goldstein DS. Cardiac ectopy in chronic autonomic failure. Clin Auton Res. 2010;20(2):85–92. doi:10.1007/s10286-009-0043-0.

    Article  PubMed  Google Scholar 

  26. van Vliet P, Hilt AD, Thijs RD, van Dijk JG. Effect of orthostatic hypotension on sustained attention in patients with autonomic failure. J Neurol Neurosurg Psychiatry. 2015. doi:10.1136/jnnp-2014-309824.

    PubMed  Google Scholar 

  27. James C, Henderson L, Macefield VG. Real-time imaging of brain areas involved in the generation of spontaneous skin sympathetic nerve activity at rest. NeuroImage. 2013;74:188–94. doi:10.1016/j.neuroimage.2013.02.030.

    Article  PubMed  Google Scholar 

  28. James C, Macefield VG, Henderson LA. Real-time imaging of cortical and subcortical control of muscle sympathetic nerve activity in awake human subjects. NeuroImage. 2013;70:59–65. doi:10.1016/j.neuroimage.2012.12.047. This fascinating clinical study used concomitantly multi-unit muscle SNA and functional magnetic resonance imaging (fMRI) of the brain in order to identify central regions responsible for generating increases in sympathetic outflow during both rest and emotional engagement.

    Article  PubMed  Google Scholar 

  29. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, et al. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61(2):457–64. doi:10.1161/hypertensionaha.111.00194. This is the first clinical study to report single-unit muscle SNA in renally-denervated hypertensive subjects demonstrating inhibitions of single-unit firing significantly surpassing reductions in multi-unit muscle SNA.

    Article  CAS  PubMed  Google Scholar 

  30. Macefield VG. Firing patterns of muscle vasoconstrictor neurons in respiratory disease. Front Physiol. 2012;3:153. doi:10.3389/fphys.2012.00153. This is the first clinical study reporting the firing properties of single vasoconstrictor neurones innervating the muscle vascular bed in conscious humans.

    PubMed Central  PubMed  Google Scholar 

  31. Yoshimoto M, Miki K, Fink GD, King A, Osborn JW. Chronic angiotensin II infusion causes differential responses in regional sympathetic nerve activity in rats. Hypertension. 2010;55(3):644–51. doi:10.1161/hypertensionaha.109.145110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. McBryde FD, Abdala AP, Hendy EB, Pijacka W, Marvar P, Moraes DJ, et al. The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension. Nat Commun. 2013;4:2395. doi:10.1038/ncomms3395.

    Article  PubMed  Google Scholar 

  33. Booth LC, Ramchandra R, Calzavacca P, May CN. Role of prostaglandins in determining the increased cardiac sympathetic nerve activity in ovine sepsis. Am J Physiol Regul Integr Comp Physiol. 2014. doi:10.1152/ajpregu.00450.2013.

    Google Scholar 

  34. Salman IM, Phillips JK, Ameer OZ, Hildreth CM. Abnormal central control underlies impaired baroreflex control of heart rate and sympathetic nerve activity in female Lewis polycystic kidney rats. J Hypertens. 2015;33(7):1418–28. doi:10.1097/hjh.0000000000000572.

    Article  CAS  PubMed  Google Scholar 

  35. Yao Y, Hildreth CM, Farnham MM, Saha M, Sun QJ, Pilowsky PM, et al. The effect of losartan on differential reflex control of sympathetic nerve activity in chronic kidney disease. J Hypertens. 2015. doi:10.1097/hjh.0000000000000535.

    Google Scholar 

  36. Ameer OZ, Hildreth CM, Phillips JK. Sympathetic overactivity prevails over the vascular amplifier phenomena in a chronic kidney disease rat model of hypertension. Physiological reports. 2014;2(11). doi:10.14814/phy2.12205. A recent observational study which combined pharmacological manipulation of BP using ganglionic blockade and measurements of blood pressure variability in chronic kidney disease rats to provide an indirect index of sympathetic vasomotor tone.

  37. Indumathy J, Pal GK, Pal P, Ananthanarayanan PH, Parija SC, Balachander J, et al. Association of sympathovagal imbalance with obesity indices, and abnormal metabolic biomarkers and cardiovascular parameters. Obes Res Clin Pract. 2015;9(1):55–66. doi:10.1016/j.orcp.2014.01.007.

    Article  CAS  PubMed  Google Scholar 

  38. Harrison JL, Hildreth CM, Callahan SM, Goodchild AK, Phillips JK. Cardiovascular autonomic dysfunction in a novel rodent model of polycystic kidney disease. Auton Neurosci. 2010;152(1-2):60–6.

    Article  PubMed  Google Scholar 

  39. Head GA, McCarty R. Vagal and sympathetic components of the heart rate range and gain of the baroreceptor-heart rate reflex in conscious rats. J Auton Nerv Syst. 1987;21(2-3):203–13.

    Article  CAS  PubMed  Google Scholar 

  40. Mircoli L, Rivera R, Bonforte G, Fedele L, Genovesi S, Surian M, et al. Influence of left ventricular mass, uremia and hypertension on vagal tachycardic reserve. J Hypertens. 2003;21(8):1547–53. doi:10.1097/01.hjh.0000084720.53355.ad.

    Article  CAS  PubMed  Google Scholar 

  41. Badve SV, Roberts MA, Hawley CM, Cass A, Garg AX, Krum H, et al. Effects of beta-adrenergic antagonists in patients with chronic kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(11):1152–61. doi:10.1016/j.jacc.2011.04.041.

    Article  CAS  PubMed  Google Scholar 

  42. Iriuchijima J. Why is the hypotensive effect of clonidine greater in hypertensive rats? Tohoku J Exp Med. 1997;182(4):271–6.

    Article  CAS  PubMed  Google Scholar 

  43. Neumann J, Ligtenberg G, Oey L, Koomans HA, Blankestijn PJ. Moxonidine normalizes sympathetic hyperactivity in patients with eprosartan-treated chronic renal failure. J Am Soc Nephrol. 2004;15(11):2902–7. doi:10.1097/01.asn.0000143471.10750.8c.

    Article  CAS  PubMed  Google Scholar 

  44. Nikolic K, Agbaba D. Imidazoline antihypertensive drugs: selective I(1)-imidazoline receptors activation. Cardiovasc Ther. 2012;30(4):209–16. doi:10.1111/j.1755-5922.2011.00269.x.

    Article  CAS  PubMed  Google Scholar 

  45. Oates HF, Graham RM, Stokes GS. Mechanism of the hypotensive action of prazosin. Arch Int Pharmacodyn Ther. 1977;227(1):41–8.

    CAS  PubMed  Google Scholar 

  46. Burke SL, Evans RG, Moretti JL, Head GA. Levels of renal and extrarenal sympathetic drive in angiotensin II-induced hypertension. Hypertension. 2008;51(4):878–83. doi:10.1161/hypertensionaha.107.100800.

    Article  CAS  PubMed  Google Scholar 

  47. Phillips JK, Hopwood D, Loxley RA, Ghatora K, Coombes JD, Tan YS, et al. Temporal relationship between renal cyst development, hypertension and cardiac hypertrophy in a new rat model of autosomal recessive polycystic kidney disease. Kidney Blood Press Res. 2007;30(3):129–44.

    Article  PubMed  Google Scholar 

  48. Diedrich A, Jordan J, Tank J, Shannon JR, Robertson R, Luft FC, et al. The sympathetic nervous system in hypertension: assessment by blood pressure variability and ganglionic blockade. J Hypertens. 2003;21(9):1677–86. doi:10.1097/01.hjh.0000084711.87421.07.

    Article  CAS  PubMed  Google Scholar 

  49. Head GA. The sympathetic nervous system in hypertension: assessment by blood pressure variability and ganglionic blockade. J Hypertens. 2003;21(9):1619–21. doi:10.1097/01.hjh.0000084728.53355.87.

    Article  CAS  PubMed  Google Scholar 

  50. Hildreth CM, Goodchild AK, Phillips JK. Insight into autonomic nervous system control of heart rate in the rat using analysis of heart rate variability and baroreflex sensitivity. In: Pilowsky PM, Farnham MMJ, Fong AY, editors. Stimulation and inhibition of neurons. New York: Humana; 2013. p. 203–23.

    Chapter  Google Scholar 

  51. Task Force of the European Society of Cardiology the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93(5):1043–65. doi:10.1161/01.cir.93.5.1043.

    Article  Google Scholar 

  52. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84(2):482–92.

    Article  CAS  PubMed  Google Scholar 

  53. Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput. 2006;44(12):1031–51. doi:10.1007/s11517-006-0119-0.

    Article  CAS  PubMed  Google Scholar 

  54. Brinkmann J, Heusser K, Schmidt BM, Menne J, Klein G, Bauersachs J, et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension. 2012;60(6):1485–90. doi:10.1161/hypertensionaha.112.201186.

    Article  CAS  PubMed  Google Scholar 

  55. Song T, Qu XF, Zhang YT, Cao W, Han BH, Li Y, et al. Usefulness of the heart-rate variability complex for predicting cardiac mortality after acute myocardial infarction. BMC Cardiovasc Disord. 2014;14:59. doi:10.1186/1471-2261-14-59.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Yun JS, Ahn YB, Song KH, Yoo KD, Kim HW, Park YM, et al. The association between abnormal heart rate variability and new onset of chronic kidney disease in patients with type 2 diabetes: a ten-year follow-up study. Diabetes Res Clin Pract. 2015;108(1):31–7. doi:10.1016/j.diabres.2015.01.031.

    Article  PubMed  Google Scholar 

  57. Sayers BM. Analysis of heart rate variability. Ergonomics. 1973;16(1):17–32. doi:10.1080/00140137308924479.

    Article  CAS  PubMed  Google Scholar 

  58. Zygmunt A, Stanczyk J. Methods of evaluation of autonomic nervous system function. Arch Med Sci AMS. 2010;6(1):11–8. doi:10.5114/aoms.2010.13500.

    Article  PubMed  Google Scholar 

  59. Parati G, Ochoa JE, Salvi P, Lombardi C, Bilo G. Prognostic value of blood pressure variability and average blood pressure levels in patients with hypertension and diabetes. Diabetes Care. 2013;36 Suppl 2:S312–24. doi:10.2337/dcS13-2043.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Stauss HM. Identification of blood pressure control mechanisms by power spectral analysis. Clin Exp Pharmacol Physiol. 2007;34(4):362–8. doi:10.1111/j.1440-1681.2007.04588.x.

    Article  CAS  PubMed  Google Scholar 

  61. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al. 2007 Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25(6):1105–87. doi:10.1097/HJH.0b013e3281fc975a.

    Article  CAS  PubMed  Google Scholar 

  62. Schutte AE, Schutte R, Huisman HW, van Rooyen JM, Fourie CM, Malan NT, et al. Blood pressure variability is significantly associated with ECG left ventricular mass in normotensive Africans: the SABPA Study. Hypertens Res Off J Jpn Soc Hypertens. 2011;34(10):1127–34. doi:10.1038/hr.2011.104.

    Article  Google Scholar 

  63. Ozawa M, Tamura K, Okano Y, Matsushita K, Yanagi M, Tsurumi-Ikeya Y, et al. Identification of an increased short-term blood pressure variability on ambulatory blood pressure monitoring as a coronary risk factor in diabetic hypertensives. Clin Exp Hypertens. 2009;31(3):259–70. doi:10.1080/10641960902822518.

    Article  PubMed  Google Scholar 

  64. McMullan CJ, Bakris GL, Phillips RA, Forman JP. Association of BP variability with mortality among African Americans with CKD. Clin J Am Soc Nephrol CJASN. 2013;8(5):731–8. doi:10.2215/cjn.10131012.

    Article  PubMed  Google Scholar 

  65. Höcht C. Blood pressure variability: prognostic value and therapeutic implications. ISRN Hypertens. 2013;2013:16. doi:10.5402/2013/398485.

    Article  Google Scholar 

  66. Sinski M, Lewandowski J, Abramczyk P, Narkiewicz K, Gaciong Z. Why study sympathetic nervous system? J Physiol Pharmacol Off J Polish Physiol Soc. 2006;57 Suppl 11:79–92.

    Google Scholar 

  67. Vink EE, de Jager RL, Blankestijn PJ. Sympathetic hyperactivity in chronic kidney disease: pathophysiology and (new) treatment options. Curr Hypertens Rep. 2013;15(2):95–101. doi:10.1007/s11906-013-0328-5.

    Article  CAS  PubMed  Google Scholar 

  68. Esler M. The autonomic nervous system and cardiac arrhythmias. Clin Auton Res. 1992;2(2):133–5.

    Article  CAS  PubMed  Google Scholar 

  69. Esler M, Jennings G, Lambert G. Measurement of overall and cardiac norepinephrine release into plasma during cognitive challenge. Psychoneuroendocrinology. 1989;14(6):477–81.

    Article  CAS  PubMed  Google Scholar 

  70. Mitchell DA, Lambert G, Secher NH, Raven PB, van Lieshout J, Esler MD. Jugular venous overflow of noradrenaline from the brain: a neurochemical indicator of cerebrovascular sympathetic nerve activity in humans. J Physiol. 2009;587(Pt 11):2589–97. doi:10.1113/jphysiol.2008.167999.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Wallin BG, Thompson JM, Jennings GL, Esler MD. Renal noradrenaline spillover correlates with muscle sympathetic activity in humans. J Physiol. 1996;491(Pt 3):881–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Esler M, Lambert G, Brunner-La Rocca HP, Vaddadi G, Kaye D. Sympathetic nerve activity and neurotransmitter release in humans: translation from pathophysiology into clinical practice. Acta Physiol Scand. 2003;177(3):275–84. doi:10.1046/j.1365-201X.2003.01089.x.

    Article  CAS  PubMed  Google Scholar 

  73. Coote JH, Bothams VF. Cardiac vagal control before, during and after exercise. Exp Physiol. 2001;86(6):811–5.

    Article  CAS  PubMed  Google Scholar 

  74. Chapleau MW, Sabharwal R. Methods of assessing vagus nerve activity and reflexes. Heart Fail Rev. 2011;16(2):109–27. doi:10.1007/s10741-010-9174-6. A detailed review describing a range of methods used to directly and indirectly assess vagal tone and autonomic reflexes in clinical and experimental heart failure conditions.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Brown R, James C, Henderson LA, Macefield VG. Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally charged images. Front Physiol. 2012;3:394. doi:10.3389/fphys.2012.00394.

    PubMed Central  PubMed  Google Scholar 

  76. Grassi G, Quarti-Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S, et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension. 2011;57(4):846–51.

    Article  CAS  PubMed  Google Scholar 

  77. Sundlof G, Wallin BG. The variability of muscle nerve sympathetic activity in resting recumbent man. J Physiol. 1977;272(2):383–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Hagbarth KE, Hallin RG, Hongell A, Torebjork HE, Wallin BG. General characteristics of sympathetic activity in human skin nerves. Acta Physiol Scand. 1972;84(2):164–76. doi:10.1111/j.1748-1716.1972.tb05167.x.

    Article  CAS  PubMed  Google Scholar 

  79. Wallin BG, Esler M, Dorward P, Eisenhofer G, Ferrier C, Westerman R, et al. Simultaneous measurements of cardiac noradrenaline spillover and sympathetic outflow to skeletal muscle in humans. J Physiol. 1992;453:45–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Fagius J, Wallin BG. Long-term variability and reproducibility of resting human muscle nerve sympathetic activity at rest, as reassessed after a decade. Clin Auton Res. 1993;3(3):201–5.

    Article  CAS  PubMed  Google Scholar 

  81. Macefield VG, Wallin BG, Vallbo AB. The discharge behaviour of single vasoconstrictor motoneurones in human muscle nerves. J Physiol. 1994;481(Pt 3):799–809.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Lambert E, Hering D, Schlaich M, Lambert G. Advances in sympathetic nerve recording in humans. Front Physiol. 2012;3:11. doi:10.3389/fphys.2012.00011.

    PubMed Central  PubMed  Google Scholar 

  83. Macefield VG, Elam M, Wallin BG. Firing properties of single postganglionic sympathetic neurones recorded in awake human subjects. Auton Neurosci. 2002;95(1-2):146–59.

    Article  PubMed  Google Scholar 

  84. Hallin RG, Torebjörk HE. Single unit sympathetic activity in human skin nerves during rest and various manoeuvres. Acta Physiol Scand. 1974;92(3):303–17. doi:10.1111/j.1748-1716.1974.tb05749.x. This is the first clinical study to have successfully recorded unitary SNA in awake human subjects.

    Article  CAS  PubMed  Google Scholar 

  85. Ashley C, Burton D, Sverrisdottir YB, Sander M, McKenzie DK, Macefield VG. Firing probability and mean firing rates of human muscle vasoconstrictor neurones are elevated during chronic asphyxia. J Physiol. 2010;588(Pt 4):701–12. doi:10.1113/jphysiol.2009.185348.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Elam M, Macefield V. Multiple firing of single muscle vasoconstrictor neurons during cardiac dysrhythmias in human heart failure. J Appl Physiol (Bethesda, MD 1985). 2001;91(2):717–24.

    CAS  Google Scholar 

  87. Fatouleh R, Macefield VG. Cardiorespiratory coupling of sympathetic outflow in humans: a comparison of respiratory and cardiac modulation of sympathetic nerve activity to skin and muscle. Exp Physiol. 2013;98(9):1327–36. doi:10.1113/expphysiol.2013.072421.

    Article  PubMed  Google Scholar 

  88. Macefield VG, Wallin BG. Respiratory and cardiac modulation of single sympathetic vasoconstrictor and sudomotor neurones to human skin. J Physiol. 1999;516(Pt 1):303–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Macefield VG, Wallin BG. The discharge behaviour of single sympathetic neurones supplying human sweat glands. J Auton Nerv Syst. 1996;61(3):277–86.

    Article  CAS  PubMed  Google Scholar 

  90. Burke SL, Lambert E, Head GA. New approaches to quantifying sympathetic nerve activity. Curr Hypertens Rep. 2011;13(3):249–57. doi:10.1007/s11906-011-0196-9. This excellent review provides a summary of various methods used to directly or indirectly measure SNA.

    Article  PubMed  Google Scholar 

  91. Greenwood JP, Stoker JB, Mary DA. Single-unit sympathetic discharge: quantitative assessment in human hypertensive disease. Circulation. 1999;100(12):1305–10.

    Article  CAS  PubMed  Google Scholar 

  92. Morrison SF. Differential control of sympathetic outflow. Am J Physiol Regul Integr Comp Physiol. 2001;281(3):R683–98.

    CAS  PubMed  Google Scholar 

  93. Jones JF, Wang Y, Jordan D. Activity of C fibre cardiac vagal efferents in anaesthetized cats and rats. J Physiol. 1998;507(Pt 3):869–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Montano N, Furlan R, Guzzetti S, McAllen RM, Julien C. Analysis of sympathetic neural discharge in rats and humans. Philos Trans Series A Math Phys Eng Sci. 2009;367(1892):1265–82. doi:10.1098/rsta.2008.0285.

    Article  Google Scholar 

  95. Ricksten SE, Lundin S, Thoren P. Spontaneous variations in arterial blood pressure, heart rate and sympathetic nerve activity in conscious normotensive and spontaneously hypertensive rats. Acta Physiol Scand. 1984;120(4):595–600. doi:10.1111/j.1748-1716.1984.tb07425.x.

    Article  CAS  PubMed  Google Scholar 

  96. Scislo TJ, Augustyniak RA, O’Leary DS. Differential arterial baroreflex regulation of renal, lumbar, and adrenal sympathetic nerve activity in the rat. Am J Physiol. 1998;275(4 Pt 2):R995–R1002.

    CAS  PubMed  Google Scholar 

  97. Cao WH, Morrison SF. Responses of adrenal sympathetic preganglionic neurons to stimulation of cardiopulmonary receptors. Brain Res. 2000;887(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang W, Thoren P. Hyper-responsiveness of adrenal sympathetic nerve activity in spontaneously hypertensive rats to ganglionic blockade, mental stress and neuronglucopenia. Pflugers Arch - Eur J Physiol. 1998;437(1):56–60.

    Article  CAS  Google Scholar 

  99. DiBona GF. Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2000;279(5):R1517–24.

    CAS  PubMed  Google Scholar 

  100. Johns EJ, Kopp UC, DiBona GF. Neural control of renal function. Compr Physiol. 2011;1(2):731–67. doi:10.1002/cphy.c100043.

    PubMed  Google Scholar 

  101. Vitela M, Herrera-Rosales M, Haywood JR, Mifflin SW. Baroreflex regulation of renal sympathetic nerve activity and heart rate in renal wrap hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2005;288(4):R856–62.

    Article  CAS  PubMed  Google Scholar 

  102. Salman IM, Kandukuri DS, Harrison JL, Hildreth CM, Phillips JK. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease. Front Physiol. 2015;6. doi:10.3389/fphys.2015.00218. This is the first study to use dual telemetry recording of BP and renal SNA in a conscious rat model of chronic renal dysfunction.

  103. Kanbar R, Orea V, Barres C, Julien C. Baroreflex control of renal sympathetic nerve activity during air-jet stress in rats. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R362–7. doi:10.1152/ajpregu.00413.2006.

    Article  CAS  PubMed  Google Scholar 

  104. Hamza SM, Hall JE. Direct recording of renal sympathetic nerve activity in unrestrained, conscious mice. Hypertension. 2012;60(3):856–64. doi:10.1161/hypertensionaha.111.186577. This exquisite study demonstrates an effective and accessible method for direct recording of renal SNA in conscious mice.

    Article  CAS  PubMed  Google Scholar 

  105. Habler HJ, Janig W, Krummel M, Peters OA. Reflex patterns in postganglionic neurons supplying skin and skeletal muscle of the rat hindlimb. J Neurophysiol. 1994;72(5):2222–36.

    CAS  PubMed  Google Scholar 

  106. Mueller PJ, Mischel NA, Scislo TJ. Differential activation of adrenal, renal, and lumbar sympathetic nerves following stimulation of the rostral ventrolateral medulla of the rat. Am J Physiol Regul Integr Comp Physiol. 2011;300(5):R1230–40. doi:10.1152/ajpregu.00713.2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Chen CY, DiCarlo SE. Daily exercise and gender influence arterial baroreflex regulation of heart rate and nerve activity. Am J Physiol. 1996;271(5 Pt 2):H1840–8.

    CAS  PubMed  Google Scholar 

  108. Janes RD, Brandys JC, Hopkins DA, Johnstone DE, Murphy DA, Armour JA. Anatomy of human extrinsic cardiac nerves and ganglia. Am J Cardiol. 1986;57(4):299–309.

    Article  CAS  PubMed  Google Scholar 

  109. Turner MJ, Kawada T, Sugimachi M. Differential dynamic control of cardiac and splanchnic sympathetic nerve activity by the arterial baroreflex. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf. 2013;2013:3809–12. doi:10.1109/embc.2013.6610374.

    Google Scholar 

  110. Ramchandra R, Hood SG, Watson AM, Allen AM, May CN. Central angiotensin type 1 receptor blockade decreases cardiac but not renal sympathetic nerve activity in heart failure. Hypertension. 2012;59(3):634–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Bertram D, Orea V, Chapuis B, Barres C, Julien C. Differential responses of frequency components of renal sympathetic nerve activity to arterial pressure changes in conscious rats. Am J Physiol Regul Integr Comp Physiol. 2005;289(4):R1074–82. doi:10.1152/ajpregu.00270.2005.

    Article  CAS  PubMed  Google Scholar 

  112. Tanaka M, McKinley MJ, McAllen RM. Role of an excitatory preoptic-raphe pathway in febrile vasoconstriction of the rat’s tail. Am J Physiol Regul Integr Comp Physiol. 2013;305(12):R1479–89. doi:10.1152/ajpregu.00401.2013.

    Article  CAS  PubMed  Google Scholar 

  113. Meckler RL, Weaver LC. Characteristics of ongoing and reflex discharge of single splenic and renal sympathetic postganglionic fibres in cats. J Physiol. 1988;396:139–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Kawabe T, Chitravanshi VC, Kawabe K, Sapru HN. Cardiovascular function of a glutamatergic projection from the hypothalamic paraventricular nucleus to the nucleus tractus solitarius in the rat. Neuroscience. 2008;153(3):605–17. doi:10.1016/j.neuroscience.2008.02.076.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Turner A, Kumar N, Farnham M, Lung M, Pilowsky P, McMullan S. Rostroventrolateral medulla neurons with commissural projections provide input to sympathetic premotor neurons: anatomical and functional evidence. Eur J Neurosci. 2013;38(4):2504–15. doi:10.1111/ejn.12232.

    Article  PubMed  Google Scholar 

  116. Stocker SD, Muntzel MS. Recording sympathetic nerve activity chronically in rats: surgery techniques, assessment of nerve activity, and quantification. Am J Physiol Heart Circ Physiol. 2013;305(10):H1407–16. doi:10.1152/ajpheart.00173.2013. This is a comprehensive review which details the methodology for recording renal, lumbar and splanchnic SNA in conscious rats covering animal surgical exposure and techniques to identify sympathetic signal and prolong nerve viability.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Koepke JP, DiBona GF. Central beta-adrenergic receptors mediate renal nerve activity during stress in conscious spontaneously hypertensive rats. Hypertension. 1985;7(3 Pt 1):350–6.

    CAS  PubMed  Google Scholar 

  118. Neahring JC, Jones SY, DiBona GF. Cardiopulmonary baroreflex function in nephrotic rats. J Am Soc Nephrol. 1995;5(12):2082–6.

    CAS  PubMed  Google Scholar 

  119. Armitage JA, Burke SL, Prior LJ, Barzel B, Eikelis N, Lim K, et al. Rapid onset of renal sympathetic nerve activation in rabbits fed a high-fat diet. Hypertension. 2012;60(1):163–71.

    Article  CAS  PubMed  Google Scholar 

  120. Burke SL, Head GA. Method for in vivo calibration of renal sympathetic nerve activity in rabbits. J Neurosci Methods. 2003;127(1):63–74.

    Article  PubMed  Google Scholar 

  121. Guild SJ, McBryde FD, Malpas SC, Barrett CJ. High dietary salt and angiotensin II chronically increase renal sympathetic nerve activity: a direct telemetric study. Hypertension. 2012;59(3):614–20.

    Article  CAS  PubMed  Google Scholar 

  122. Head GA, Burke SL. Renal and cardiac sympathetic baroreflexes in hypertensive rabbits. Clin Exp Pharmacol Physiol. 2001;28(12):972–5.

    Article  CAS  PubMed  Google Scholar 

  123. Ramchandra R, Barrett CJ, Guild SJ, Malpas SC. Evidence of differential control of renal and lumbar sympathetic nerve activity in conscious rabbits. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):20.

    Google Scholar 

  124. Phillips JK, Salman IM, Harrison JL, Hildreth CM. Long-term telemetry recordings demonstrate increased renal sympathetic nerve activity and blood pressure in rats with chronic kidney disease. J Hypertens. 31:e141.

  125. Peterson DF, Coote JH, Gilbey MP, Futuro-Neto HA. Differential pattern of sympathetic outflow during upper airway stimulation with smoke. Am J Physiol. 1983;245(3):R433–7.

    CAS  PubMed  Google Scholar 

  126. White SW, McRitchie RJ. Nasopharyngeal reflexes: integrative analysis of evoked respiratory and cardiovascular effects. Aust J Exp Biol Med Sc. 1973;51(1):17–31.

    Article  CAS  Google Scholar 

  127. Nakamura T, Hayashida Y. Autonomic cardiovascular responses to smoke exposure in conscious rats. Am J Physiol. 1992;262(5 Pt 2):R738–45.

    CAS  PubMed  Google Scholar 

  128. Dampney RA, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li YW, et al. Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol. 2002;29(4):261–8.

    Article  CAS  PubMed  Google Scholar 

  129. Ma X, Abboud FM, Chapleau MW. Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice. Am J Physiol Regul Integr Comp Physiol. 2002;283(5):R1033–40.

    Article  PubMed  Google Scholar 

  130. Parati G, Di Rienzo M, Mancia G. How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens. 2000;18(1):7–19.

    Article  CAS  PubMed  Google Scholar 

  131. Smyth HS, Sleight P, Pickering GW. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Circ Res. 1969;24(1):109–21.

    Article  CAS  PubMed  Google Scholar 

  132. Abdel-Rahman AA. Gender difference in baroreflex-mediated bradycardia in young rats: role of cardiac sympathetic and parasympathetic components. Can J Physiol Pharmacol. 1999;77(5):358–66.

    Article  CAS  PubMed  Google Scholar 

  133. Coleman TG. Arterial baroreflex control of heart rate in the conscious rat. Am J Physiol. 1980;238(4):H515–20.

    CAS  PubMed  Google Scholar 

  134. Dibner-Dunlap ME, Thames MD. Control of sympathetic nerve activity by vagal mechanoreflexes is blunted in heart failure. Circulation. 1992;86(6):1929–34.

    Article  CAS  PubMed  Google Scholar 

  135. Hunt BE, Farquhar WB. Nonlinearities and asymmetries of the human cardiovagal baroreflex. Am J Physiol Regul Integr Comp Physiol. 2005;288(5):R1339–46. doi:10.1152/ajpregu.00038.2004.

    Article  CAS  PubMed  Google Scholar 

  136. Kent BB, Drane JW, Blumenstein B, Manning JW. A mathematical model to assess changes in the baroreceptor reflex. Cardiology. 1972;57(5):295–310.

    Article  CAS  PubMed  Google Scholar 

  137. Wallin BG, Sundlof G. A quantitative study of muscle nerve sympathetic activity in resting normotensive and hypertensive subjects. Hypertension. 1979;1(2):67–77.

    Article  CAS  PubMed  Google Scholar 

  138. de Paula PM, Castania JA, Bonagamba LG, Salgado HC, Machado BH. Hemodynamic responses to electrical stimulation of the aortic depressor nerve in awake rats. Am J Physiol. 1999;277(1 Pt 2):R31–8.

    PubMed  Google Scholar 

  139. DiBona GF, Jones SY. Endogenous angiotensin affects responses to stimulation of baroreceptor afferent nerves. J Hypertens. 2003;21(8):1539–46. doi:10.1097/01.hjh.0000059076.43904.12.

    Article  CAS  PubMed  Google Scholar 

  140. Fan W, Andresen MC. Differential frequency-dependent reflex integration of myelinated and nonmyelinated rat aortic baroreceptors. Am J Physiol. 1998;275(2 Pt 2):H632–40.

    CAS  PubMed  Google Scholar 

  141. Fan W, Schild JH, Andresen MC. Graded and dynamic reflex summation of myelinated and unmyelinated rat aortic baroreceptors. Am J Physiol. 1999;277(3 Pt 2):R748–56.

    CAS  PubMed  Google Scholar 

  142. Easton J, Howe A. The distribution of thoracic glomus tissue (aortic bodies) in the rat. Cell Tissue Res. 1983;232(2):349–56.

    Article  CAS  PubMed  Google Scholar 

  143. Sapru HN, Gonzalez E, Krieger AJ. Aortic nerve stimulation in the rat: cardiovascular and respiratory responses. Brain Res Bull. 1981;6(5):393–8.

    Article  CAS  PubMed  Google Scholar 

  144. Sapru HN, Krieger AJ. Carotid and aortic chemoreceptor function in the rat. J Appl Physiol. 1977;42(3):344–8.

    CAS  PubMed  Google Scholar 

  145. Salgado HC, Barale ÁR, Castania JA, Machado BH, Chapleau MW, Fazan R. Baroreflex responses to electrical stimulation of aortic depressor nerve in conscious SHR. Am J Physiol Heart Circ Physiol. 2007;292(1):H593–600. doi:10.1152/ajpheart.00181.2006. This unique experimental study provided a fascinating method for quantifying baroreceptor afferent activity using recording of the aortic depressor nerve in conscious spontaneously hypertensive rats.

    Article  CAS  PubMed  Google Scholar 

  146. Lohmeier TE, Dwyer TM, Irwin ED, Rossing MA, Kieval RS. Prolonged activation of the baroreflex abolishes obesity-induced hypertension. Hypertension. 2007;49(6):1307–14. doi:10.1161/hypertensionaha.107.087874.

    Article  CAS  PubMed  Google Scholar 

  147. Lohmeier TE, Iliescu R, Dwyer TM, Irwin ED, Cates AW, Rossing MA. Sustained suppression of sympathetic activity and arterial pressure during chronic activation of the carotid baroreflex. Am J Physiol Heart Circ Physiol. 2010;299(2):H402–9. doi:10.1152/ajpheart.00372.2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Heusser K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55(3):619–26. doi:10.1161/hypertensionaha.109.140665.

    Article  CAS  PubMed  Google Scholar 

  149. Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;56(15):1254–8. doi:10.1016/j.jacc.2010.03.089.

    Article  PubMed  Google Scholar 

  150. Doumas M, Faselis C, Kokkinos P, Anyfanti P, Tsioufis C, Papademetriou V. Carotid baroreceptor stimulation: a promising approach for the management of resistant hypertension and heart failure. Curr Vasc Pharmacol. 2014;12(1):30–7.

    Article  CAS  PubMed  Google Scholar 

  151. Menne J, Jordan J, Linnenweber-Held S, Haller H. Resistant hypertension: baroreflex stimulation as a new tool. Nephrol Dial Transplant. 2013;28(2):288–95. doi:10.1093/ndt/gfs504.

    Article  CAS  PubMed  Google Scholar 

  152. Chapleau MW, Hajduczok G, Abboud FM. Pulsatile activation of baroreceptors causes central facilitation of baroreflex. Am J Physiol. 1989;256(6 Pt 2):H1735–41.

    CAS  PubMed  Google Scholar 

  153. Melcher A, Donald DE. Maintained ability of carotid baroreflex to regulate arterial pressure during exercise. Am J Physiol. 1981;241(6):H838–49.

    CAS  PubMed  Google Scholar 

  154. Pickering AE, Simms AE, Paton JF. Dominant role of aortic baroreceptors in the cardiac baroreflex of the rat in situ. Auton Neurosci. 2008;142(1–2):32–9. doi:10.1016/j.autneu.2008.03.009.

    Article  PubMed  Google Scholar 

  155. Stauss HM, Moffitt JA, Chapleau MW, Abboud FM, Johnson AK. Baroreceptor reflex sensitivity estimated by the sequence technique is reliable in rats. Am J Physiol Heart Circ Physiol. 2006;291(1):H482–3. doi:10.1152/ajpheart.00228.2006.

    Article  PubMed  CAS  Google Scholar 

  156. Watkins LL, Grossman P, Sherwood A. Noninvasive assessment of baroreflex control in borderline hypertension. Comparison with the phenylephrine method. Hypertension. 1996;28(2):238–43.

    Article  CAS  PubMed  Google Scholar 

  157. Di Rienzo M, Parati G, Castiglioni P, Tordi R, Mancia G, Pedotti A. Baroreflex effectiveness index: an additional measure of baroreflex control of heart rate in daily life. Am J Physiol Regul Integr Comp Physiol. 2001;280(3):R744–51.

    PubMed  Google Scholar 

  158. Laude D, Elghozi JL, Girard A, Bellard E, Bouhaddi M, Castiglioni P, et al. Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the EuroBaVar study). Am J Physiol Regul Integr Comp Physiol. 2004;286(1):R226–31. doi:10.1152/ajpregu.00709.2002.

    Article  CAS  PubMed  Google Scholar 

  159. Grassi G, Trevano FQ, Seravalle G, Scopelliti F, Mancia G. Baroreflex function in hypertension: consequences for antihypertensive therapy. Prog Cardiovasc Dis. 2006;48(6):407–15. doi:10.1016/j.pcad.2006.03.002.

    Article  CAS  PubMed  Google Scholar 

  160. Kashihara K. Roles of arterial baroreceptor reflex during Bezold-Jarisch reflex. Curr Cardiol Rev. 2009;5(4):263–7.

    Article  PubMed Central  PubMed  Google Scholar 

  161. Mancia G, Grassi G, Ferrari A, Zanchetti A. Reflex cardiovascular regulation in humans. J Cardiovasc Pharmacol. 1985;7 Suppl 3:S152–9.

    Article  PubMed  Google Scholar 

  162. Merrill DC, Segar JL, McWeeny OJ, Robillard JE. Sympathetic responses to cardiopulmonary vagal afferent stimulation during development. Am J Physiol. 1999;277(4 Pt 2):H1311–6.

    CAS  PubMed  Google Scholar 

  163. Thomas GD. Neural control of the circulation. Adv Physiol Educ. 2011;35(1):28–32. doi:10.1152/advan.00114.2010.

    Article  PubMed  Google Scholar 

  164. Aviado DM, Guevara AD. The Bezold-Jarisch reflex. A historical perspective of cardiopulmonary reflexes. Ann N Y Acad Sci. 2001;940:48–58.

    Article  CAS  PubMed  Google Scholar 

  165. Kaufman MP, Baker DG, Coleridge HM, Coleridge JC. Stimulation by bradykinin of afferent vagal C-fibers with chemosensitive endings in the heart and aorta of the dog. Circ Res. 1980;46(4):476–84.

    Article  CAS  PubMed  Google Scholar 

  166. Ma D, Chakrabarti MK, Whitwam JG. Propofol, bradycardia and the Bezold-Jarisch reflex in rabbits. Br J Anaesth. 1999;82(3):412–7.

    Article  CAS  PubMed  Google Scholar 

  167. Cooper VL, Hainsworth R. Head-up sleeping improves orthostatic tolerance in patients with syncope. Clin Auton Res. 2008;18(6):318–24. doi:10.1007/s10286-008-0494-8.

    Article  PubMed  Google Scholar 

  168. Grassi G, Giannattasio C, Cleroux J, Cuspidi C, Sampieri L, Bolla GB, et al. Cardiopulmonary reflex before and after regression of left ventricular hypertrophy in essential hypertension. Hypertension. 1988;12(3):227–37.

    Article  CAS  PubMed  Google Scholar 

  169. Hinojosa-Laborde C, Jones SY, DiBona GF. Hemodynamics and baroreflex function in rats with nephrotic syndrome. Am J Physiol. 1994;267(4 Pt 2):R953–64.

    CAS  PubMed  Google Scholar 

  170. Sun MK, Guyenet PG. Arterial baroreceptor and vagal inputs to sympathoexcitatory neurons in rat medulla. Am J Physiol. 1987;252(4 Pt 2):R699–709.

    CAS  PubMed  Google Scholar 

  171. Braga VA, Soriano RN, Machado BH. Sympathoexcitatory response to peripheral chemoreflex activation is enhanced in juvenile rats exposed to chronic intermittent hypoxia. Exp Physiol. 2006;91(6):1025–31. doi:10.1113/expphysiol.2006.034868.

    Article  PubMed  Google Scholar 

  172. Cao WH, Morrison SF. Differential chemoreceptor reflex responses of adrenal preganglionic neurons. Am J Physiol Regul Integr Comp Physiol. 2001;281(6):R1825–32.

    CAS  PubMed  Google Scholar 

  173. Silva AQ, Schreihofer AM. Altered sympathetic reflexes and vascular reactivity in rats after exposure to chronic intermittent hypoxia. J Physiol. 2011;589(6):1463–76. doi:10.1113/jphysiol.2010.200691.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  174. Wenker IC, Sobrinho CR, Takakura AC, Mulkey DK, Moreira TS. P2Y1 receptors expressed by C1 neurons determine peripheral chemoreceptor modulation of breathing, sympathetic activity, and blood pressure. Hypertension. 2013;62(2):263–73. doi:10.1161/hypertensionaha.113.01487.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  175. Huang J, Lusina S, Xie T, Ji E, Xiang S, Liu Y, et al. Sympathetic response to chemostimulation in conscious rats exposed to chronic intermittent hypoxia. Respir Physiol Neurobiol. 2009;166(2):102–6. doi:10.1016/j.resp.2009.02.010.

    Article  CAS  PubMed  Google Scholar 

  176. Steinback CD, Salzer D, Medeiros PJ, Kowalchuk J, Shoemaker JK. Hypercapnic vs. hypoxic control of cardiovascular, cardiovagal, and sympathetic function. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):R402–10. doi:10.1152/ajpregu.90772.2008.

    Article  CAS  PubMed  Google Scholar 

  177. Trombetta IC, Maki-Nunes C, Toschi-Dias E, Alves MJ, Rondon MU, Cepeda FX, et al. Obstructive sleep apnea is associated with increased chemoreflex sensitivity in patients with metabolic syndrome. Sleep. 2013;36(1):41–9. doi:10.5665/sleep.2298.

    PubMed Central  PubMed  Google Scholar 

  178. Makeham JM, Goodchild AK, Pilowsky PM. NK1 receptor activation in rat rostral ventrolateral medulla selectively attenuates somato-sympathetic reflex while antagonism attenuates sympathetic chemoreflex. Am J Physiol Regul Integr Comp Physiol. 2005;288(6):R1707–15. doi:10.1152/ajpregu.00537.2004.

    Article  CAS  PubMed  Google Scholar 

  179. Miyamoto T, Inagaki M, Takaki H, Kawada T, Yanagiya Y, Sugimachi M, et al. Integrated characterization of the human chemoreflex system controlling ventilation, using an equilibrium diagram. Eur J Appl Physiol. 2004;93(3):340–6. doi:10.1007/s00421-004-1219-x.

    Article  PubMed  Google Scholar 

  180. Sabino JP, da Silva CA, Giusti H, Glass ML, Salgado HC, Fazan Jr R. Parasympathetic activation by pyridostigmine on chemoreflex sensitivity in heart-failure rats. Auton Neurosci. 2013;179(1-2):43–8. doi:10.1016/j.autneu.2013.07.001.

    Article  CAS  PubMed  Google Scholar 

  181. Meyer C, Schueller P, Balzer J, Lauer T, Westenfeld R, Schauerte P, et al. Sympathetic hyperactivity influences chemosensor function in patients with end-stage renal disease. Eur J Med Res. 2009;4:151–5.

    Article  Google Scholar 

  182. Rassaf T, Schueller P, Westenfeld R, Floege J, Eickholt C, Hennersdorf M, et al. Peripheral chemosensor function is blunted in moderate to severe chronic kidney disease. Int J Cardiol. 2012;155(2):201–5.

    Article  PubMed  Google Scholar 

  183. Rassaf T, Westenfeld R, Balzer J, Lauer T, Merx M, Floege J, et al. Modulation of peripheral chemoreflex by neurohumoral adaptations after kidney transplantation. Eur J Med Res. 2010;15 Suppl 2:83–7.

    PubMed Central  PubMed  Google Scholar 

  184. Barros RC, Bonagamba LG, Okamoto-Canesin R, de Oliveira M, Branco LG, Machado BH. Cardiovascular responses to chemoreflex activation with potassium cyanide or hypoxic hypoxia in awake rats. Auton Neurosci. 2002;97(2):110–5.

    Article  CAS  PubMed  Google Scholar 

  185. Braga VA, Burmeister MA, Sharma RV, Davisson RL. Cardiovascular responses to peripheral chemoreflex activation and comparison of different methods to evaluate baroreflex gain in conscious mice using telemetry. Am J Physiol Regul Integr Comp Physiol. 2008;295(4):R1168–74. doi:10.1152/ajpregu.90375.2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  186. Abdala AP, McBryde FD, Marina N, Hendy EB, Engelman ZJ, Fudim M, et al. Hypertension is critically dependent on the carotid body input in the spontaneously hypertensive rat. J Physiol. 2012;590(Pt 17):4269–77. doi:10.1113/jphysiol.2012.237800.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. Franchini KG, Krieger EM. Carotid chemoreceptors influence arterial pressure in intact and aortic-denervated rats. Am J Physiol. 1992;262(4 Pt 2):R677–83.

    CAS  PubMed  Google Scholar 

  188. Li YL, Xia XH, Zheng H, Gao L, Li YF, Liu D, et al. Angiotensin II enhances carotid body chemoreflex control of sympathetic outflow in chronic heart failure rabbits. Cardiovasc Res. 2006;71(1):129–38. doi:10.1016/j.cardiores.2006.03.017.

    Article  CAS  PubMed  Google Scholar 

  189. LeDoux JF, Wilson LB. Neuronal application of capsaicin modulates somatic pressor reflexes. Am J Physiol Regul Integr Comp Physiol. 2001;281(3):R868–77.

    CAS  PubMed  Google Scholar 

  190. Stornetta RL, Morrison SF, Ruggiero DA, Reis DJ. Neurons of rostral ventrolateral medulla mediate somatic pressor reflex. Am J Physiol. 1989;256(2 Pt 2):R448–62.

    CAS  PubMed  Google Scholar 

  191. McMullan S, Pathmanandavel K, Pilowsky PM, Goodchild AK. Somatic nerve stimulation evokes qualitatively different somatosympathetic responses in the cervical and splanchnic sympathetic nerves in the rat. Brain Res. 2008;1217:139–47. doi:10.1016/j.brainres.2008.04.034.

    Article  CAS  PubMed  Google Scholar 

  192. Schmitt S, Dichter MA. Electrophysiologic recordings in traumatic brain injury. Handb Clin Neurol. 2015;127:319–39. doi:10.1016/b978-0-444-52892-6.00021-0.

    Article  PubMed  Google Scholar 

  193. Jin SH, Chung CK, Kim JE, Choi YD. A new measure for monitoring intraoperative somatosensory evoked potentials. J Korean Neurosurg Soc. 2014;56(6):455–62. doi:10.3340/jkns.2014.56.6.455.

    Article  PubMed Central  PubMed  Google Scholar 

  194. Synek VM. Diagnostic importance of somatosensory evoked potentials in the diagnosis of thoracic outlet syndrome. Clin EEG Electroencephalogr. 1986;17(3):112–6.

    CAS  Google Scholar 

  195. Calin A, Kumaraswamy VM, Braver D, Nair DG, Moldovan M, Simon MV. Intraoperative somatosensory evoked potential monitoring decreases EEG burst suppression ratio during deep general anesthesia. J Clin neurophysiol Off Public Am Electroencephalogr Soc. 2014;31(2):133–7. doi:10.1097/wnp.0000000000000034.

    Google Scholar 

  196. Bocci T, Santarcangelo E, Vannini B, Torzini A, Carli G, Ferrucci R, et al. Cerebellar direct current stimulation modulates pain perception in humans. Restor Neurol Neurosci. 2015. doi:10.3233/rnn-140453.

    PubMed  Google Scholar 

  197. Hernandez-Palazon J, Izura V, Fuentes-Garcia D, Piqueras-Perez C, Domenech-Asensi P, Falcon-Arana L. Comparison of the effects of propofol and sevoflurane combined with remifentanil on transcranial electric motor-evoked and somatosensory-evoked potential monitoring during brainstem surgery. J Neurosurg Anesthesiol. 2015. doi:10.1097/ana.0000000000000157.

    PubMed  Google Scholar 

  198. Heidbreder E, Schafferhans K, Heidland A. Disturbances of peripheral and autonomic nervous system in chronic renal failure: effects of hemodialysis and transplantation. Clin Nephrol. 1985;23(5):222–8.

    CAS  PubMed  Google Scholar 

  199. Mathias CJ. Autonomic diseases: clinical features and laboratory evaluation. J Neurol Neurosurg Psychiatr. 2003;74 Suppl 3:iii31–41.

    PubMed Central  PubMed  Google Scholar 

  200. Sahin M, Kayatas M, Urun Y, Sennaroglu E, Akdur S. Performing only one cardiovascular reflex test has a high positive predictive value for diagnosing autonomic neuropathy in patients with chronic renal failure on hemodialysis. Ren Fail. 2006;28(5):383–7. doi:10.1080/08860220600683722.

    Article  PubMed  Google Scholar 

  201. Kim A, Deo SH, Vianna LC, Balanos GM, Hartwich D, Fisher JP, et al. Sex differences in carotid baroreflex control of arterial blood pressure in humans: relative contribution of cardiac output and total vascular conductance. Am J Physiol Heart Circ Physiol. 2011;301(6):H2454–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  202. Di Leo R, Vita G, Messina C, Savica V. Autonomic function in elderly uremics studied by spectral analysis of heart rate. Kidney Int. 2005;67(4):1521–5. doi:10.1111/j.1523-1755.2005.00231.x.

    Article  PubMed  Google Scholar 

  203. Mallat Z, Vicaut E, Sangare A, Verschueren J, Fontaine G, Frank R. Prediction of head-up tilt test result by analysis of early heart rate variations. Circulation. 1997;96(2):581–4.

    Article  CAS  PubMed  Google Scholar 

  204. Schroeder C, Adams F, Boschmann M, Tank J, Haertter S, Diedrich A, et al. Phenotypical evidence for a gender difference in cardiac norepinephrine transporter function. Am J Physiol Regul Integr Comp Physiol. 2004;286(5):R851–6.

    Article  CAS  PubMed  Google Scholar 

  205. Sanders JS, Mark AL, Ferguson DW. Evidence for cholinergically mediated vasodilation at the beginning of isometric exercise in humans. Circulation. 1989;79(4):815–24.

    Article  CAS  PubMed  Google Scholar 

  206. Cleroux J, Giannattasio C, Grassi G, Seravalle G, Sampieri L, Cuspidi C, et al. Effects of ageing on the cardiopulmonary receptor reflex in normotensive humans. J Hypertens Suppl Off J Int Soc Hypertens. 1988;6(4):S141–4.

    CAS  Google Scholar 

  207. Cashion AK, Cowan PA, Milstead EJ, Gaber AO, Hathaway DK. Heart rate variability, mortality, and exercise in patients with end-stage renal disease. Prog Transplant. 2000;10(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  208. Vita G, Bellinghieri G, Trusso A, Costantino G, Santoro D, Monteleone F, et al. Uremic autonomic neuropathy studied by spectral analysis of heart rate. Kidney Int. 1999;56(1):232–7. doi:10.1046/j.1523-1755.1999.00511.x.

    Article  CAS  PubMed  Google Scholar 

  209. Narkiewicz K, Pesek CA, Kato M, Phillips BG, Davison DE, Somers VK. Baroreflex control of sympathetic nerve activity and heart rate in obstructive sleep apnea. Hypertension. 1998;32(6):1039–43.

    Article  CAS  PubMed  Google Scholar 

  210. Hjemdahl P, Fagius J, Freyschuss U, Wallin BG, Daleskog M, Bohlin G, et al. Muscle sympathetic activity and norepinephrine release during mental challenge in humans. Am J Physiol. 1989;257(5 Pt 1):E654–64.

    CAS  PubMed  Google Scholar 

  211. Khurana RK, Wu R. The cold face test: a non-baroreflex mediated test of cardiac vagal function. Clin Auton Res. 2006;16(3):202–7. doi:10.1007/s10286-006-0332-9.

    Article  PubMed  Google Scholar 

  212. McCulloch PF, Dinovo KM, Connolly TM. The cardiovascular and endocrine responses to voluntary and forced diving in trained and untrained rats. Am J Physiol Regul Integr Comp Physiol. 2010;298(1):R224–34. doi:10.1152/ajpregu.00592.2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  213. Saino A, Pomidossi G, Perondi R, Morganti A, Turolo L, Mancia G. Modulation of sympathetic coronary vasoconstriction by cardiac renin-angiotensin system in human coronary heart disease. Circulation. 2000;101(19):2277–83.

    Article  CAS  PubMed  Google Scholar 

  214. Saino A, Pomidossi G, Perondi R, Valentini R, Rimini A, Di Francesco L, et al. Intracoronary angiotensin II potentiates coronary sympathetic vasoconstriction in humans. Circulation. 1997;96(1):148–53.

    Article  CAS  PubMed  Google Scholar 

  215. Schaller B. Trigeminocardiac reflex. A clinical phenomenon or a new physiological entity? J Neurol. 2004;251(6):658–65. doi:10.1007/s00415-004-0458-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor Jacqueline Phillips, Dr Cara Hildreth (Macquarie University, Australia), Dr Clive May (University of Melbourne, Australia), Dr Virginia Brooks (Oregon Health and Science University, USA) and Dr Ann Schreihofer (University of North Texas Health Science Centre, USA) for their constructive input on the manuscript.

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Salman declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim M. Salman.

Additional information

This article is part of the Topical Collection on Hypertension and the Kidney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, I.M. Current Approaches to Quantifying Tonic and Reflex Autonomic Outflows Controlling Cardiovascular Function in Humans and Experimental Animals. Curr Hypertens Rep 17, 84 (2015). https://doi.org/10.1007/s11906-015-0597-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0597-2

Keywords

Navigation