Skip to main content

Advertisement

Log in

Novel Therapies in Myelofibrosis: Beyond JAK Inhibitors

  • Myeloproliferative Neoplasms (P Bose, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To discuss the current treatment paradigm, review novel targets, and summarize completed and ongoing clinical trials that may lead to a paradigm shifts in the management of myelofibrosis (MF).

Recent Findings

In addition to the recent approval and ongoing late-stage development of multiple novel JAK inhibitors, recent clinical studies demonstrate therapeutic potential of targeting multiple alternate proteins and pathways including BET, MDM2, telomerase, BCL2, LSD1, PI3K, SMAC, and PTX2 in patients with MF.

Summary

MF is a myeloproliferative neoplasm characterized by clonal proliferation of myeloid cells and bone marrow fibrosis often causing cytopenias, extramedullary hematopoiesis resulting in hepatosplenomegaly, and increased pro-inflammatory cytokine production driving systemic symptoms. A significant proportion of morbidity and mortality is related to the propensity to transform to acute leukemia. Allogeneic hematopoietic stem cell transplantation is the only curative therapy; however, due to the high associated mortality, this treatment is not an option for the majority of patients with MF. Currently, there are three targeted Food and Drug Administration (FDA)–approved therapies for MF which include ruxolitinib, fedratinib, and pacritinib, all part of the JAK inhibitor class. Many patients are unable to tolerate, do not respond, or develop resistance to existing therapies, leaving a large unmet medical need. In this review, we discuss the current treatment paradigm and novel therapies in development for the treatment of MF. We review the scientific rationale of each targeted pathway. We summarize updated clinical data and ongoing trials that may lead to FDA approval of these agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Tefferi A. Primary myelofibrosis: 2019 update on diagnosis, risk-stratification and management. Am J Hematol 2018;93(12):1551–1560. https://doi.org/10.1002/ajh.25230

  2. O’Sullivan JM, Harrison CN. Myelofibrosis: clinicopathologic features, prognosis, and management. Clin Adv Hematol Oncol. 2018;16(2):121–31.

    PubMed  Google Scholar 

  3. Vallapureddy RR, Mudireddy M, Penna D, et al. Leukemic transformation among 1306 patients with primary myelofibrosis: risk factors and development of a predictive model. Blood Cancer J 2019;9(2):12. https://doi.org/10.1038/s41408-019-0175-y

  4. Tefferi A, Guglielmelli P, Larson DR, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124(16):2507–13; quiz 2615. https://doi.org/10.1182/blood-2014-05-579136

  5. da Costa Reis Monte-Mór B, Plo I, da Cunha AF, et al. Constitutive JunB expression, associated with the JAK2 V617F mutation, stimulates proliferation of the erythroid lineage. Leukemia. 2009;23(1):144–52. https://doi.org/10.1038/leu.2008.275

  6. Walz C, Crowley BJ, Hudon HE, et al. Activated Jak2 with the V617F point mutation promotes G1/S phase transition. J Biol Chem. 2006;281(26):18177–83. https://doi.org/10.1074/jbc.M600064200.

    Article  CAS  PubMed  Google Scholar 

  7. Tefferi A, Lasho TL, Finke CM, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28(7):1472–7. https://doi.org/10.1038/leu.2014.3.

    Article  CAS  PubMed  Google Scholar 

  8. Wernig G, Kharas MG, Okabe R, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell. 2008;13(4):311–20. https://doi.org/10.1016/j.ccr.2008.02.009.

    Article  CAS  PubMed  Google Scholar 

  9. Martí-Carvajal AJ, Anand V, Solà I. Janus kinase-1 and Janus kinase-2 inhibitors for treating myelofibrosis. Cochrane Database Syst Rev. 2015; (4):CD010298. https://doi.org/10.1002/14651858.CD010298.pub2

  10. Vannucchi AM, Kantarjian HM, Kiladjian JJ, et al. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica. 2015;100(9):1139–45. https://doi.org/10.3324/haematol.2014.119545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harrison C, Kiladijan J-J, Verstovsek S. Overall and progression-free survival in patients treated with fedratinib as first-line myelofibrosis (MF) therapy and after prior ruxolitinib (rux): results from the JAKARTA and JAKARTA2 trials. EHA Library. 2021;324611; S203

  12. Claire N. Harrison RAM, Catriona Jamieson, et al. Case series of potential wernicke's encephalopathy in Patients Treated with Fedratinib. Blood. 2017. https://doi.org/10.1182/blood.V130.Suppl_1.4197.4197 Sd.

  13. Kuykendall AT, Shah S, Talati C, et al. Between a rux and a hard place: evaluating salvage treatment and outcomes in myelofibrosis after ruxolitinib discontinuation. Ann Hematol. 2018;97(3):435–41. https://doi.org/10.1007/s00277-017-3194-4.

    Article  CAS  PubMed  Google Scholar 

  14. Mascarenhas J, Mehra M, He J, Potluri R, Loefgren C. Patient characteristics and outcomes after ruxolitinib discontinuation in patients with myelofibrosis. J Med Econ. 2020;23(7):721–7. https://doi.org/10.1080/13696998.2020.1741381.

    Article  PubMed  Google Scholar 

  15. Palandri F, Breccia M, Bonifacio M, et al. Life after ruxolitinib: Reasons for discontinuation, impact of disease phase, and outcomes in 218 patients with myelofibrosis. Cancer. 2020;126(6):1243–1252. https://doi.org/10.1002/cncr.32664

  16. Newberry KJ, Patel K, Masarova L, et al. Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood. 2017;130(9):1125–1131. https://doi.org/10.1182/blood-2017-05-783225

  17. Ruxolitinib [package insert]. Wilmington, DE: Incyte Corporation2011.

  18. Masarova L, Alhuraiji A, Bose P, et al. Significance of thrombocytopenia in patients with primary and postessential thrombocythemia/polycythemia vera myelofibrosis. Eur J Haematol. 2018;100(3):257–63. https://doi.org/10.1111/ejh.13005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fedratinib [package insert]. Summit, NJ; Celgene Corporation2019.

  20. Pardanani A, Harrison C, Cortes JE, et al. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol. 2015;1(5):643–51. https://doi.org/10.1001/jamaoncol.2015.1590.

    Article  PubMed  Google Scholar 

  21. Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33(2):299–312. https://doi.org/10.1038/s41375-018-0357-9

  22. Singer JW, Al-Fayoumi S, Ma H, Komrokji RS, Mesa R, Verstovsek S. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor. J Exp Pharmacol. 2016;8:11–9. https://doi.org/10.2147/JEP.S110702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Komrokji RS, Seymour JF, Roberts AW, et al. Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis. Blood. 2015;125(17):2649–55. https://doi.org/10.1182/blood-2013-02-484832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mesa RA, Vannucchi AM, Mead A, et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematol. 2017;4(5):e225–36. https://doi.org/10.1016/S2352-3026(17)30027-3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mascarenhas J, Hoffman R, Talpaz M, et al. Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis: a randomized clinical trial. JAMA Oncol. 2018;4(5):652–659. https://doi.org/10.1001/jamaoncol.2017.5818

  26. Palmer JM, Mesa RA, Oh ST, et al. The impact of pacritinib on myelofibrosis symptoms in patients with moderate and severe thrombocytopenia: a retrospective analysis of patients in the Persist-2 study. Blood. 2021;138:3628. https://doi.org/10.1182/blood-2021-144505

  27. Gerds AT, Savona MR, Scott BL, et al. Determining the recommended dose of pacritinib: results from the PAC203 dose-finding trial in advanced myelofibrosis. Blood Adv. 2020;4(22):5825–5835. https://doi.org/10.1182/bloodadvances.2020003314

  28. Tremblay D, Mesa R, Scott B, et al. Pacritinib demonstrates spleen volume reduction in patients with myelofibrosis independent of JAK2V617F allele burden. Blood Adv. 2020;4(23):5929–5935. https://doi.org/10.1182/bloodadvances.2020002970

  29. Asshoff M, Petzer V, Warr MR, et al. Momelotinib inhibits ACVR1/ALK2, decreases hepcidin production, and ameliorates anemia of chronic disease in rodents. Blood. 2017;129(13):1823–1830. https://doi.org/10.1182/blood-2016-09-740092

  30. Oh ST, Talpaz M, Gerds AT, et al. ACVR1/JAK1/JAK2 inhibitor momelotinib reverses transfusion dependency and suppresses hepcidin in myelofibrosis phase 2 trial. Blood Adv. 2020;4(18):4282–91. https://doi.org/10.1182/bloodadvances.2020002662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mesa RA, Kiladjian JJ, Catalano JV, et al. SIMPLIFY-1: A Phase III Randomized Trial of Momelotinib Versus Ruxolitinib in Janus Kinase Inhibitor-Naïve Patients With Myelofibrosis. J Clin Oncol. 2017;35(34):3844–50. https://doi.org/10.1200/JCO.2017.73.4418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harrison CN, Vannucchi AM, Platzbecker U, et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematol. 2018;5(2):e73–81. https://doi.org/10.1016/S2352-3026(17)30237-5.

    Article  PubMed  Google Scholar 

  33. Pardanani A, Laborde RR, Lasho TL, et al. Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia. 2013;27(6):1322–7. https://doi.org/10.1038/leu.2013.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Verstovsek S, Egyed M, Lech-Maranda E. Robust Overall survival and sustained efficacy outcomes during long term exposure to momelotinib in JAK inhibitor naïve and previously JAK Inhibitor Treated Intermediate/High Risk Myelofibrosis Patients. Blood. 2020;136(Supplement 1):51–2. https://doi.org/10.1182/blood-2020-135872.

    Article  Google Scholar 

  35. Cervantes F, Isola IM, Alvarez-Larrán A, Hernández-Boluda JC, Correa JG, Pereira A. Danazol therapy for the anemia of myelofibrosis: assessment of efficacy with current criteria of response and long-term results. Ann Hematol. 2015;94(11):1791–6. https://doi.org/10.1007/s00277-015-2435-7.

    Article  CAS  PubMed  Google Scholar 

  36. Mesa RA, Gerds AT, Vannucchi A, et al. MOMENTUM: Phase 3 randomized study of momelotinib (MMB) versus danazol (DAN) in symptomatic and anemic myelofibrosis (MF) patients previously treated with a JAK inhibitor. J Clin Oncol 2022;40(16_suppl):7002–7002. https://doi.org/10.1200/JCO.2022.40.16_suppl.7002

  37. Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067–73. https://doi.org/10.1038/nature09504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Winter GE, Mayer A, Buckley DL, et al. BET Bromodomain Proteins Function as Master Transcription Elongation Factors Independent of CDK9 Recruitment. Mol Cell. 2017;67(1):5-18.e19. https://doi.org/10.1016/j.molcel.2017.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gallagher SJ, Mijatov B, Gunatilake D, et al. Control of NF-kB activity in human melanoma by bromodomain and extra-terminal protein inhibitor I-BET151. Pigment Cell Melanoma Res. 2014;27(6):1126–37. https://doi.org/10.1111/pcmr.12282.

    Article  CAS  PubMed  Google Scholar 

  40. Nicodeme E, Jeffrey KL, Schaefer U, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468(7327):1119–23. https://doi.org/10.1038/nature09589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kleppe M, Koche R, Zou L, et al. Dual Targeting of Oncogenic Activation and Inflammatory Signaling Increases Therapeutic Efficacy in Myeloproliferative Neoplasms. Cancer Cell. 2018;33(4):785–787. https://doi.org/10.1016/j.ccell.2018.03.024

  42. Ciceri P, Müller S, O’Mahony A, et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat Chem Biol. 2014;10(4):305–12. https://doi.org/10.1038/nchembio.1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kleppe M, Koche R, Zou L, et al. Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms. Cancer Cell. 2018;33(1):29–43.e7. https://doi.org/10.1016/j.ccell.2017.11.009

  44. Talpaz M, Rampal RK, Verstovsek S. CPI-0610, a Bromodomain and Extraterminal Domain Protein (BET) inhibitor, as monotherapy in advanced myelofibrosis patients refractory/intolerant to JAK inhibitor: update from Phase 2 MANIFEST study. Presented at American Society of Hematology Annual Conference. 2020. Abstract 2163. Session 634.

  45. Kremyanskaya M, Mascarenhas J, Palandri F, et al. Pelabresib (CPI-0610) Monotherapy in Patients with Myelofibrosis - Update of Clinical and Translational Data from the Ongoing Manifest Trial. Blood. 2021 p. Page 141.

  46. Mascarenhas J, Harrison C, Patriarca A. CPI-0610, a Bromodomain and Extraterminal Domain Protein (BET) Inhibitor, in Combination with Ruxolitinib, in JAK-Inhibitor-Naïve Myelofibrosis Patients: Update of MANIFEST Phase 2 Study. Presented at American Society of Hematology Annual Meeting. 2020. Abstract 55. Session 634.

  47. Mead A, Kremyanskaya M, Hoffman R, Talpaz M, Patriarca A. CPI-0610, a bromodomain and extraterminal domain protein (bet) inhibitor, in combination with ruxolitinib, in jak-inhibitor-naive myelofibrosis patients: update of manifest phase 2 study. Br J Haematol. 2021;193:96

  48. JM M, M K, A P, C H, P B. Bet inhibitor pelabresib (CPI-0610) combined with ruxolitinib in patients with myelofibrosis — JAK inhibitor-naïve or with suboptimal response to ruxolitinib — preliminary data from the MANIFEST study. European Hematology Association. Presented June 11, 2022.

  49. Keller P, Cui J, Mertz J. Bet inhibitor pelabresib decreases inflammatory cytokines, improves bone marrow fibrosis and function, and demonstrates clinical response irrespective of mutation status in myelofibrosis patients. EHA Library. Keller P. 06/09/21; 324803; EP1080.

  50. Verstovsek S, Kremyanskaya M, Mascarenhas J, et al. Pelabresib (CPI-0610) Improved Anemia Associated With Myelofibrosis: Interim Results From Manifest Phase 2 Study. European Hematology Association. Abstract EP1077. 2021.

  51. Mascarenhas J, Harrison C, Luptakova K, et al. MANIFEST-2, a global, phase 3, randomized, double-blind, active-control study of CPI-0610 and ruxolitinib vs. placebo and ruxolitinib in JAK-inhibitor-naive myelofibrosis patients. Blood. 2020;136(Supplement 1):43–43. https://doi.org/10.1182/blood-2020-140901

  52. Nakatake M, Monte-Mor B, Debili N, et al. JAK2(V617F) negatively regulates p53 stabilization by enhancing MDM2 via La expression in myeloproliferative neoplasms. Oncogene. 2012;31(10):1323–33. https://doi.org/10.1038/onc.2011.313.

    Article  CAS  PubMed  Google Scholar 

  53. Inoue K, Fry EA, Frazier DP. Transcription factors that interact with p53 and Mdm2. Int J Cancer. 2016;138(7):1577–85. https://doi.org/10.1002/ijc.29663.

    Article  CAS  PubMed  Google Scholar 

  54. Honda R, Yasuda H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene. 2000;19(11):1473–6. https://doi.org/10.1038/sj.onc.1203464.

    Article  CAS  PubMed  Google Scholar 

  55. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem. 2000;275(12):8945–51. https://doi.org/10.1074/jbc.275.12.8945.

    Article  CAS  PubMed  Google Scholar 

  56. Lu M, Wang X, Li Y, et al. Combination treatment in vitro with Nutlin, a small-molecule antagonist of MDM2, and pegylated interferon-α 2a specifically targets JAK2V617F-positive polycythemia vera cells. Blood. 2012;120(15):3098–105. https://doi.org/10.1182/blood-2012-02-410712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mascarenhas J, Lu M, Kosiorek H, et al. Oral idasanutlin in patients with polycythemia vera. Blood. 2019;134(6):525–533. https://doi.org/10.1182/blood.2018893545

  58. Mascarenhas J, Higgins B, Anders D. Safety and Efficacy of Idasanutlin in Patients with Hydroxyurea-Resistant/Intolerant Polycythemia Vera: Results of an International Phase II Study. American Society of Hematology National Conference. 2020. Oral Presentation, session 634. Abstract 479.

  59. Al-Ali HK, Delgado RG, Lange A. A First-in-class, Murine Double Minute 2 Inhibitor (MDM2i) for Myelofibrosis relapsed or refractory to Janus Associated Kinase Inhibitor Treatment. European Hematology Association Annual Meeting. 2020, abstract S215.

  60. Verstovsek S, Al-Ali HK, Mascarenhas J, et al. BOREAS: A global phase 3 study of KRT-232, a first-in-class murine double minute 2 (MDM2) inhibitor in TP53WT relapsed/refractory (R/R) myelofibrosis (MF). J Clin Oncol. 2021;39(15_suppl):TPS7057-TPS7057. https://doi.org/10.1200/JCO.2021.39.15_suppl.TPS7057

  61. Hines J, Lartigue S, Dong H, Qian Y, Crews CM. MDM2-Recruiting PROTAC Offers Superior, Synergistic Antiproliferative Activity via Simultaneous Degradation of BRD4 and Stabilization of p53. Cancer Res. 2019;79(1):251–262. https://doi.org/10.1158/0008-5472.CAN-18-2918

  62. Zvereva MI, Shcherbakova DM, Dontsova OA. Telomerase: structure, functions, and activity regulation. Biochemistry (Mosc). 2010;75(13):1563–83. https://doi.org/10.1134/s0006297910130055.

    Article  CAS  Google Scholar 

  63. Meyne J, Ratliff RL, Moyzis RK. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci U S A. 1989;86(18):7049–53. https://doi.org/10.1073/pnas.86.18.7049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moyzis RK, Buckingham JM, Cram LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A. 1988;85(18):6622–6. https://doi.org/10.1073/pnas.85.18.6622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345(6274):458–60. https://doi.org/10.1038/345458a0.

    Article  CAS  PubMed  Google Scholar 

  66. Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB. Telomere end-replication problem and cell aging. J Mol Biol. 1992;225(4):951–60. https://doi.org/10.1016/0022-2836(92)90096-3.

    Article  CAS  PubMed  Google Scholar 

  67. Shippen-Lentz D, Blackburn EH. Functional evidence for an RNA template in telomerase. Science. 1990;247(4942):546–52. https://doi.org/10.1126/science.1689074.

    Article  CAS  PubMed  Google Scholar 

  68. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–5. https://doi.org/10.1126/science.7605428.

    Article  CAS  PubMed  Google Scholar 

  69. Wang X, Hu CS, Petersen B, et al. Imetelstat, a telomerase inhibitor, is capable of depleting myelofibrosis stem and progenitor cells. Blood Adv. 2018;2(18):2378–2388. https://doi.org/10.1182/bloodadvances.2018022012

  70. Tefferi A, Lasho TL, Begna KH, et al. A Pilot Study of the Telomerase Inhibitor Imetelstat for Myelofibrosis. N Engl J Med. 2015;373(10):908–19. https://doi.org/10.1056/NEJMoa1310523.

    Article  CAS  PubMed  Google Scholar 

  71. Geron Announces Removal of Full Clinical Hold on Imetelstat IND. November 3, 2014. https://ir.geron.com/investors/press-releases/press-release-details/2014/Geron-Announces-Removal-of-Full-Clinical-Hold-on-Imetelstat-IND/default.aspx.

  72. Mascarenhas J, Komrokji RS, Palandri F, et al. Randomized, Single-Blind, Multicenter Phase II Study of Two Doses of Imetelstat in Relapsed or Refractory Myelofibrosis. J Clin Oncol. 2021;39:JCO2002864. https://doi.org/10.1200/JCO.20.02864

  73. Mascarenhas J, Komrokji R, Cavo M. Telomerase Activity, Telomere Length and hTERT Expression Correlate with Clinical Outcomes in Higher-Risk Myelofibrosis (MF) Relapsed/Refractory (R/R) to Janus Kinase Inhibitor Treated with Imetelstat. Abstract 347. Session 634. Presented at American Society of Hematology National Conference. 2020.

  74. Brunelle JK, Letai A. Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci. 2009;122(Pt 4):437–41. https://doi.org/10.1242/jcs.031682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Venetoclax (venclexta) [package insert]. Chicago, Il: Abbvie Inc.; 2016.

  76. Tognon R, Gasparotto EP, Neves RP, et al. Deregulation of apoptosis-related genes is associated with PRV1 overexpression and JAK2 V617F allele burden in Essential Thrombocythemia and Myelofibrosis. J Hematol Oncol. 2012;5:2. https://doi.org/10.1186/1756-8722-5-2

  77. Zhang M, Mathews Griner LA, Ju W, et al. Selective targeting of JAK/STAT signaling is potentiated by Bcl-xL blockade in IL-2-dependent adult T-cell leukemia. Proc Natl Acad Sci U S A. 2015;112(40):12480–5. https://doi.org/10.1073/pnas.1516208112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. F P, J F, A T, al. e. NAVITOCLAX PLUS RUXOLITINIB IN JAK INHIBITOR-NAÏVE PATIENTS WITH MYELOFIBROSIS: PRELIMINARY SAFETY AND EFFICACY IN A MULTICENTER, OPEN-LABEL PHASE 2 STUDY. European Hematology Association. Abstract S197. Presented June 11.

  79. Pemmaraju N, Garcia JS, Jalaja P. The Addition of Navitoclax to Ruxolitinib Demonstrates Efficacy within Different High-Risk Populations in Patients with Relapsed/Refractory Myelofibrosis. Blood 2020;136(Supplement 1):49–50. https://doi.org/10.1182/blood-2020-136938

  80. Harrison CN, Garcia JS, Somervaille TCP, et al. Addition of Navitoclax to Ongoing Ruxolitinib Therapy for Patients With Myelofibrosis With Progression or Suboptimal Response: Phase II Safety and Efficacy. J Clin Oncol 0(0):JCO.21.02188. https://doi.org/10.1200/jco.21.02188

  81. V P, A C-C, S G, al. E. NAVITOCLAX MONOTHERAPY IN PATIENTS WITH MYELOFIBROSIS PREVIOUSLY TREATED WITH JAK-2 INHIBITORS: SAFETY AND TOLERABILITY. European Hematology Association. Abstract P1070. Presented June 10, 2022.

  82. Sprüssel A, Schulte JH, Weber S, et al. Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation. Leukemia. 2012;26(9):2039–51. https://doi.org/10.1038/leu.2012.157.

    Article  CAS  PubMed  Google Scholar 

  83. Harris WJ, Huang X, Lynch JT, et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell. 2012;21(4):473–87. https://doi.org/10.1016/j.ccr.2012.03.014.

    Article  CAS  PubMed  Google Scholar 

  84. Niebel D, Kirfel J, Janzen V, Höller T, Majores M, Gütgemann I. Lysine-specific demethylase 1 (LSD1) in hematopoietic and lymphoid neoplasms. Blood. 2014;124(1):151–2. https://doi.org/10.1182/blood-2014-04-569525.

    Article  CAS  PubMed  Google Scholar 

  85. Jutzi JS, Kleppe M, Dias J, et al. LSD1 Inhibition Prolongs Survival in Mouse Models of MPN by Selectively Targeting the Disease Clone. Hemasphere. 2018;2(3): e54. https://doi.org/10.1097/HS9.0000000000000054.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gill H, Yacoub A, Pettit KM, et al. A Phase 2 Study of the LSD1 Inhibitor Img-7289 (bomedemstat) for the Treatment of Advanced Myelofibrosis. Blood. 2021;138(Supplement 1):139–139. https://doi.org/10.1182/blood-2021-148682.

    Article  Google Scholar 

  87. Bartalucci N, Guglielmelli P, Vannucchi AM. Rationale for targeting the PI3K/Akt/mTOR pathway in myeloproliferative neoplasms. Clin Lymphoma Myeloma Leuk. 2013;13(Suppl 2):S307–9. https://doi.org/10.1016/j.clml.2013.07.011.

    Article  PubMed  Google Scholar 

  88. Guglielmelli P, Barosi G, Rambaldi A, et al. Safety and efficacy of everolimus, a mTOR inhibitor, as single agent in a phase 1/2 study in patients with myelofibrosis. Blood. 2011;118(8):2069–76. https://doi.org/10.1182/blood-2011-01-330563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Durrant ST, Nagler A, Guglielmelli P, et al. Results from HARMONY: an open-label, multicenter, 2-arm, phase 1b, dose-finding study assessing the safety and efficacy of the oral combination of ruxolitinib and buparlisib in patients with myelofibrosis. Haematologica. 2019;104(12):e551-e554. https://doi.org/10.3324/haematol.2018.209965

  90. Yacoub A, Wang ES, Rampal RR. Addition of parsaclisib (INCB050465), a PI3Kδ inhibitor, in patients with suboptimal response to ruxolitinib: A phase 2 study in patients with myelofibrosis. Presented at: 2021 AACR Annual Meeting 2021; April 10–15, 2021; Virtual. Abstract CT162.

  91. Nunes-Santos CJ, Uzel G, Rosenzweig SD. PI3K pathway defects leading to immunodeficiency and immune dysregulation. J Allergy Clin Immunol. 2019;143(5):1676–87. https://doi.org/10.1016/j.jaci.2019.03.017.

    Article  CAS  PubMed  Google Scholar 

  92. Stark AK, Sriskantharajah S, Hessel EM, Okkenhaug K. PI3K inhibitors in inflammation, autoimmunity and cancer. Curr Opin Pharmacol. 2015;23:82–91. https://doi.org/10.1016/j.coph.2015.05.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Werner JA, Ishida K, Wisler J, et al. Phosphatidylinositol 3-Kinase δ Inhibitor-Induced Immunomodulation and Secondary Opportunistic Infection in the Cynomolgus Monkey. Toxicol Pathol. 2020;48(8):949–964. https://doi.org/10.1177/0192623320966238

  94. Owens TW, Gilmore AP, Streuli CH, Foster FM. Inhibitor of Apoptosis Proteins: Promising Targets for Cancer Therapy. J Carcinog Mutagen. 2013;Suppl 14:S14-004 https://doi.org/10.4172/2157-2518.S14-004

  95. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102(1):33–42. https://doi.org/10.1016/s0092-8674(00)00008-8.

    Article  CAS  PubMed  Google Scholar 

  96. Craver BM, Nguyen TK, Nguyen J, et al. The SMAC mimetic LCL-161 selectively targets JAK2. Exp Hematol Oncol. 2020;9:1. https://doi.org/10.1186/s40164-019-0157-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pemmaraju N, Carter BZ, Bose P. Final results of a phase 2 clinical trial of LCL161, an oral SMAC mimetic for patients with myelofibrosis. Blood Adv. 2021;5(16):3163–73. https://doi.org/10.1182/bloodadvances.2020003829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Castaño AP, Lin SL, Surowy T, et al. Serum amyloid P inhibits fibrosis through Fc gamma R-dependent monocyte-macrophage regulation in vivo. Sci Transl Med. 2009;1(5):5ra13. https://doi.org/10.1126/scitranslmed.3000111

  99. Murray LA, Rosada R, Moreira AP, et al. Serum amyloid P therapeutically attenuates murine bleomycin-induced pulmonary fibrosis via its effects on macrophages. PLoS One. 2010;5(3):e9683. https://doi.org/10.1371/journal.pone.0009683

  100. van den Blink B, Dillingh MR, Ginns LC, et al. Recombinant human pentraxin-2 therapy in patients with idiopathic pulmonary fibrosis: safety, pharmacokinetics and exploratory efficacy. Eur Respir J. 2016;47(3):889–97. https://doi.org/10.1183/13993003.00850-2015.

    Article  CAS  PubMed  Google Scholar 

  101. Pilling D, Roife D, Wang M, et al. Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J Immunol. 2007;179(6):4035–44. https://doi.org/10.4049/jimmunol.179.6.4035.

    Article  CAS  PubMed  Google Scholar 

  102. Verstovsek S, Hasserjian RP, Pozdnyakova O. PRM-151 in Myelofibrosis: Efficacy and Safety in an Open Label Extension Study. Blood. 2018;132(Supplement 1):686. https://doi.org/10.1182/blood-2018-99-115362.

    Article  Google Scholar 

  103. Verstovsek S, Talpaz M, WAdleigh M. A Randomized, double blind phase 2 study of 3 different doses of PRN-151 in patients with myelofibrosis who were previously treated with or ineligible for ruxolitinib. 2019;3(S1):367

  104. Wang JC, Chen C, Kundra A, et al. Programmed Cell Death Receptor (PD-1) Ligand (PD-L1) expression in Philadelphia chromosome-negative myeloproliferative neoplasms. Leuk Res. 2019;04(79):52–9. https://doi.org/10.1016/j.leukres.2019.02.010.

    Article  CAS  Google Scholar 

  105. Cimen Bozkus C, Roudko V, Finnigan JP, et al. Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T-cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms. Cancer Discov. 2019;9(9):1192–1207. https://doi.org/10.1158/2159-8290.CD-18-1356

  106. Abou Dalle I, Kantarjian H, Daver N, et al. Phase II study of single-agent nivolumab in patients with myelofibrosis. Ann Hematol. 2021. https://doi.org/10.1007/s00277-021-04618-5

  107. Hobbs GS, Bozkus CC, Wadleigh M. Results of a Phase II Study of PD-1 Inhibition in Advanced Myeloproliferative Neoplasms. Abstract 2162. Session 634. Presented at American Society of Hematology National Conference. 2020.

  108. Handlos Grauslund J, Holmström MO, Jørgensen NG, et al. Therapeutic Cancer Vaccination With a Peptide Derived From the Calreticulin Exon 9 Mutations Induces Strong Cellular Immune Responses in Patients With. Front Oncol. 2021;11: 637420. https://doi.org/10.3389/fonc.2021.637420.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Yacoub A, Patnaik MM, Ali H, et al. A Phase 1/2 Study of Single Agent Tagraxofusp, a First-in-Class CD123-Targeted Therapy, in Patients with Myelofibrosis That Is Relapsed/Refractory Following JAK Inhibitor Therapy. Blood. 2021;138:140. https://doi.org/10.1182/blood-2021-145276

  110. Dredge K, Marriott JB, Macdonald CD, et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer. 2002;87(10):1166–72. https://doi.org/10.1038/sj.bjc.6600607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chihara D, Masarova L, Newberry KJ, et al. Long-term results of a phase II trial of lenalidomide plus prednisone therapy for patients with myelofibrosis. Leuk Res. 2016;48:1–5. https://doi.org/10.1016/j.leukres.2016.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mesa RA, Yao X, Cripe LD, et al. Lenalidomide and prednisone for myelofibrosis: Eastern Cooperative Oncology Group (ECOG) phase 2 trial E4903. Blood. 2010;116(22):4436–8. https://doi.org/10.1182/blood-2010-05-287417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Quintas-Cardama A, Kantarjian HM, Manshouri T, et al. Lenalidomide plus prednisone results in durable clinical, histopathologic, and molecular responses in patients with myelofibrosis. J Clin Oncol. 2009;27(28):4760–6. https://doi.org/10.1200/JCO.2009.22.6548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Daver N, Shastri A, Kadia T, et al. Phase II study of pomalidomide in combination with prednisone in patients with myelofibrosis and significant anemia. Leuk Res. 2014;38(9):1126–9. https://doi.org/10.1016/j.leukres.2014.06.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mesa RA, Pardanani AD, Hussein K, et al. Phase1/-2 study of Pomalidomide in myelofibrosis. Am J Hematol. 2010;85(2):129–30. https://doi.org/10.1002/ajh.21598.

    Article  CAS  PubMed  Google Scholar 

  116. Ross DM. Responses to pomalidomide and placebo in myelofibrosis-related anaemia. Leukemia. 2017;31(3):532–3. https://doi.org/10.1038/leu.2016.348.

    Article  CAS  PubMed  Google Scholar 

  117. Tefferi A, Al-Ali HK, Barosi G, et al. A randomized study of pomalidomide vs placebo in persons with myeloproliferative neoplasm-associated myelofibrosis and RBC-transfusion dependence. Leukemia. 2017;31(5):1252. https://doi.org/10.1038/leu.2017.2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kiladjian JJ, Chomienne C, Fenaux P. Interferon-alpha therapy in bcr-abl-negative myeloproliferative neoplasms. Leukemia. 2008;22(11):1990–8. https://doi.org/10.1038/leu.2008.280.

    Article  PubMed  Google Scholar 

  119. Gisslinger H, Klade C, Georgiev P, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020;7(3):e196–208. https://doi.org/10.1016/S2352-3026(19)30236-4.

    Article  PubMed  Google Scholar 

  120. Mosca M, Hermange G, Tisserand A, et al. Inferring the dynamic of mutated hematopoietic stem and progenitor cells induced by IFNα in myeloproliferative neoplasms. Blood. 2021. https://doi.org/10.1182/blood.2021010986

  121. Kiladjian J-J, Soret-Dulphy J, Resche-Rigon M, et al. Ruxopeg, a Multi-Center Bayesian Phase 1/2 Adaptive Randomized Trial of the Combination of Ruxolitinib and Pegylated Interferon Alpha 2a in Patients with Myeloproliferative Neoplasm (MPN)-Associated Myelofibrosis. Blood. 2018;132(Supplement 1):581–581. https://doi.org/10.1182/blood-2018-99-110785.

    Article  Google Scholar 

  122. Sørensen AL, Mikkelsen SU, Knudsen TA, et al. Ruxolitinib and interferon-α2 combination therapy for patients with polycythemia vera or myelofibrosis: a phase II study. Haematologica. 2020;105(9):2262–2272. https://doi.org/10.3324/haematol.2019.235648

  123. Mascarenhas J, Kosiorek HE, Varricchio L. Rationale for and Results of a Phase I Study of the TGF-β 1/3 Inhibitor AVID200 in Subjects with Myelofibrosis: MPN-RC 118 Trial. Presented at American Society of Hematology Conference 2020. Session 634. Abstract 1254. .

  124. Arranz L, Arriero MDM, Villatoro A. Interleukin-1β as emerging therapeutic target in hematological malignancies and potentially in their complications. Blood Rev. 2017;31(5):306–317. https://doi.org/10.1016/j.blre.2017.05.001

  125. Emadi S, Clay D, Desterke C, et al. IL-8 and its CXCR1 and CXCR2 receptors participate in the control of megakaryocytic proliferation, differentiation, and ploidy in myeloid metaplasia with myelofibrosis. Blood. 2005;105(2):464–73. https://doi.org/10.1182/blood-2003-12-4415.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JW and JM contributed equally to the writing, editing, and reviewing of this paper without the assistance a medical writer or contribution from a third-party entity.

Corresponding author

Correspondence to John Mascarenhas.

Ethics declarations

Conflict of Interest

JW reports no conflicts of interest. JM receives clinical research funding paid to the institution from Incyte, Novartis, Roche, Merck, Kartos, CTI Bio, PharmaEssentia, Geron, Promedior, Forbius, and Celgene/BMS, and consulting fees from Incyte, Celgene/BMS, Roche, Novartis, Sierra Oncology, CTI Bio, PharmaEssentia, Constellation, Kartos, and Karyopharm.

Human and Animal Right and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Myeloproliferative Neoplasms

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waksal, J.A., Mascarenhas, J. Novel Therapies in Myelofibrosis: Beyond JAK Inhibitors. Curr Hematol Malig Rep 17, 140–154 (2022). https://doi.org/10.1007/s11899-022-00671-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-022-00671-7

Keywords

Navigation