Skip to main content

Advertisement

Log in

MRD in ALL: Optimization and Innovations

  • ACUTE LYMPHOCYTIC LEUKEMIA (R. MESA, SECTION EDITOR)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Measurable residual disease (MRD) is an important monitoring parameter that can help predict survival outcomes in acute lymphoblastic leukemia (ALL). Identifying patients with MRD has the potential to decrease the risk of relapse with the initiation of early salvage therapy and to help guide decision making regarding allogeneic hematopoietic cell transplantation. In this review, we discuss MRD in ALL, focusing on advantages and limitations between MRD testing techniques and how to monitor MRD in specific patient populations.

Recent Findings

MRD has traditionally been measured through bone marrow samples, but more data for evaluation of MRD via peripheral blood is emerging. Current and developmental testing strategies for MRD include multiparametric flow cytometry (MFC), next-generation sequencing (NGS), quantitative polymerase chain reaction (qPCR), and ClonoSeq. Novel therapies are incorporating MRD as an outcome measure to demonstrate efficacy, including blinatumomab, inotuzumab ozogamicin, and chimeric antigen receptor T (CAR-T) cell therapy.

Summary

Understanding how to incorporate MRD testing into the management of ALL could improve patient outcomes and predict efficacy of new therapy options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bassan R. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood. 2009;113(18):4153–62. https://doi.org/10.1182/blood-2008-11-185132.

    Article  CAS  PubMed  Google Scholar 

  2. Brüggemann M. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006;107(3):1116–23. https://doi.org/10.1182/blood-2005-07-2708.

    Article  CAS  PubMed  Google Scholar 

  3. Mortuza FY. Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. J Clin Oncol. 2002;20(4):1094–104. https://doi.org/10.1200/JCO.2002.20.4.1094.

    Article  PubMed  Google Scholar 

  4. Holowiecki J. Status of minimal residual disease after induction predicts outcome in both standard and high-risk Ph-negative adult acute lymphoblastic leukaemia. The Polish Adult Leukemia Group ALL 4-2002 MRD Study. Br J Haematol. 2008;142(2):227–37. https://doi.org/10.1111/j.1365-2141.2008.07185.x.

    Article  PubMed  Google Scholar 

  5. Patel B. Minimal residual disease is a significant predictor of treatment failure in non T-lineage adult acute lymphoblastic leukaemia: final results of the international trial UKALL XII/ECOG2993. Br J Haematol. 2010;148(1):80–9. https://doi.org/10.1111/j.1365-2141.2009.07941.x.

    Article  CAS  PubMed  Google Scholar 

  6. • Berry DA. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol. 2017;3(7):e170580. https://doi.org/10.1001/jamaoncol.2017.0580. This meta-analysis including 39 studies showed significantly improved event-free survival and overall survival for adult and pediatric patients with ALL who achieved MRD negativity following induction therapy.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cassaday RD. Description and prognostic significance of the kinetics of minimal residual disease status in adults with acute lymphoblastic leukemia treated with HyperCVAD. Am J Hematol. 2018;93(4):546–52. https://doi.org/10.1002/ajh.25030.

    Article  CAS  PubMed  Google Scholar 

  8. Ravandi F. Detection of MRD may predict the outcome of patients with Philadelphia chromosome-positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood. 2013;122(7):1214–21. https://doi.org/10.1182/blood-2012-11-466482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stock W. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403. Blood. 2019;133(14):1548–59. https://doi.org/10.1182/blood-2018-10-881961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Samra B. Evolving therapy of adult acute lymphoblastic leukemia: state-of-the-art treatment and future directions. J Hematol Oncol. 2020;13(1):70. https://doi.org/10.1186/s13045-020-00905-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blinatumomab [package insert]. Thousand Oaks, CA: Amgen Inc.; 2022. https://www.pi.amgen.com/~/media/amgen/repositorysites/pi-amgen-com/blincyto/blincyto_pi_hcp_english.pdf. Accessed 24 May 2022.

  12. Cavé H. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer—Childhood Leukemia Cooperative Group. N Engl J Med. 1998;339(9):591–8. https://doi.org/10.1056/NEJM199808273390904.

    Article  PubMed  Google Scholar 

  13. Foroni L. Investigation of minimal residual disease in childhood and adult acute lymphoblastic leukaemia by molecular analysis. Br J Haematol. 1999;105(1):7–24.

    CAS  PubMed  Google Scholar 

  14. van Dongen JJJM. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352(9142):1731–8. https://doi.org/10.1016/S0140-6736(98)04058-6.

    Article  PubMed  Google Scholar 

  15. Brisco J. Relationship between minimal residual disease and outcome in adult acute lymphoblastic leukemia. Blood. 1996;87(12):5251–6.

    Article  CAS  Google Scholar 

  16. Foroni L. Molecular detection of minimal residual disease in adult and childhood acute lymphoblastic leukaemia reveals differences in treatment response. Leukemia. 1997;11(10):1732–41. https://doi.org/10.1038/sj.leu.2400841.

    Article  CAS  PubMed  Google Scholar 

  17. Krampera M. Outcome prediction by immunophenotypic minimal residual disease detection in adult T-cell acute lymphoblastic leukaemia. Br J Haematol. 2003;120(1):74–9. https://doi.org/10.1046/j.1365-2141.2003.03974.x.

    Article  PubMed  Google Scholar 

  18. Ravandi F. Minimal residual disease assessed by multi-parameter flow cytometry is highly prognostic in adult patients with acute lymphoblastic leukaemia. Br J Haematol. 2016;172(3):392–400. https://doi.org/10.1111/bjh.13834.

    Article  CAS  PubMed  Google Scholar 

  19. Vidriales MB. Minimal residual disease in adolescent (older than 14 years) and adult acute lymphoblastic leukemias: early immunophenotypic evaluation has high clinical value. Blood. 2003;101(12):4695–700. https://doi.org/10.1182/blood-2002-08-2613.

    Article  CAS  PubMed  Google Scholar 

  20. Beldjord K, Chevret S, Asnafi V, Huguet F, Boulland ML, Leguay T, Thomas X, Cayuela JM, Grardel N, Chalandon Y, Boissel N. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood. 2014;123(24):3739–49. https://doi.org/10.1182/blood-2014-01-547695.

    Article  CAS  PubMed  Google Scholar 

  21. Gökbuget N. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 2012;120(9):1868–76. https://doi.org/10.1182/blood-2011-09-377713.

    Article  CAS  PubMed  Google Scholar 

  22. Gökbuget N. Minimal residual disease level predicts outcome in adults with Ph-negative B-precursor acute lymphoblastic leukemia. Hematology. 2019;24(1):337–48. https://doi.org/10.1080/16078454.2019.1567654.

    Article  CAS  PubMed  Google Scholar 

  23. Nagafuji K. Monitoring of minimal residual disease (MRD) is useful to predict prognosis of adult patients with Ph-negative ALL: results of a prospective study (ALL MRD2002 Study). J Hematol Oncol. 2013;6:14. https://doi.org/10.1186/1756-8722-6-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ribera JM. Treatment of high-risk Philadelphia chromosome-negative acute lymphoblastic leukemia in adolescents and adults according to early cytologic response and minimal residual disease after consolidation assessed by flow cytometry: final results of the PETHEMA ALL-AR-03 trial. J Clin Oncol. 2014;32(15):1595–604. https://doi.org/10.1200/JCO.2013.52.2425.

    Article  CAS  PubMed  Google Scholar 

  25. Salah-Eldin. Clinical significance of minimal residual disease in young adults with standard-risk/Ph-negative precursor B-acute lymphoblastic leukemia: results of prospective study. Med Oncol. 2014;31(5):938. https://doi.org/10.1007/s12032-014-0938-z.

    Article  CAS  PubMed  Google Scholar 

  26. Raff T. Molecular relapse in adult standard-risk ALL patients detected by prospective MRD monitoring during and after maintenance treatment: data from the GMALL 06/99 and 07/03 trials. Blood. 2007;109(3):910–5. https://doi.org/10.1182/blood-2006-07-037093.

    Article  CAS  PubMed  Google Scholar 

  27. Brown PA. Acute lymphoblastic leukemia, version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2021;19(9):1079–109. https://doi.org/10.6004/jnccn.2021.0042.

    Article  CAS  Google Scholar 

  28. Ribera JM. Chemotherapy or allogeneic transplantation in high-risk Philadelphia chromosome-negative adult lymphoblastic leukemia. Blood. 2021;137(14):1879–94. https://doi.org/10.1182/blood.2020007311.

    Article  CAS  PubMed  Google Scholar 

  29. Götz G. Clinical and prognostic significance of the Philadelphia chromosome in adult patients with acute lymphoblastic leukemia. Ann Hematol. 1992;64(2):97–100. https://doi.org/10.1007/BF01715353.

    Article  PubMed  Google Scholar 

  30. Liu-Dumlao T. Philadelphia-positive acute lymphoblastic leukemia: current treatment options. Curr Oncol Rep. 2012;14(5):387–94. https://doi.org/10.1007/s11912-012-0247-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dombret H. Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia—results of the prospective multicenter LALA-94 trial. Blood. 2002;100(7):2357–66. https://doi.org/10.1182/blood-2002-03-0704.

    Article  CAS  PubMed  Google Scholar 

  32. Pane F. Significant reduction of the hybrid BCR/ABL transcripts after induction and consolidation therapy is a powerful predictor of treatment response in adult Philadelphia-positive acute lymphoblastic leukemia. Leukemia. 2005;19(4):628–35. https://doi.org/10.1038/sj.leu.2403683.

    Article  CAS  PubMed  Google Scholar 

  33. Kim DY. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood. 2015;126(6):746–56. https://doi.org/10.1182/blood-2015-03-636548.

    Article  CAS  PubMed  Google Scholar 

  34. Chiaretti S. A sequential approach with imatinib, chemotherapy and transplant for adult Ph+ acute lymphoblastic leukemia: final results of the GIMEMA LAL 0904 study. Haematologica. 2016;101(12):1544–52. https://doi.org/10.3324/haematol.2016.144535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Foà R. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118(25):6521–8. https://doi.org/10.1182/blood-2011-05-351403.

    Article  CAS  PubMed  Google Scholar 

  36. Ottmann OG. Imatinib compared with chemotherapy as front-line treatment of elderly patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). Cancer. 2007;109(10):2068–76. https://doi.org/10.1002/cncr.22631.

    Article  CAS  PubMed  Google Scholar 

  37. Rousselot P. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016;128(6):774–82. https://doi.org/10.1182/blood-2016-02-700153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bassan R. Different molecular levels of post-induction minimal residual disease may predict hematopoietic stem cell transplantation outcome in adult Philadelphia-negative acute lymphoblastic leukemia. Blood Cancer J. 2014;4:e225. https://doi.org/10.1038/bcj.2014.48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spinelli O. Clearance of minimal residual disease after allogeneic stem cell transplantation and the prediction of the clinical outcome of adult patients with high-risk acute lymphoblastic leukemia. Haematologica. 2007;92(5):612–8. https://doi.org/10.3324/haematol.10965.

    Article  PubMed  Google Scholar 

  40. • Shen Z. Influence of pre-transplant minimal residual disease on prognosis after Allo-SCT for patients with acute lymphoblastic leukemia: systematic review and meta-analysis. BMC Cancer. 2018;18(1):755. https://doi.org/10.1186/s12885-018-4670-5. This meta-analysis including 21 studies showed patients with positive MRD prior to allogeneic stem cell transplantation was a significant negative predictor of relapse-free survival, event-free survival, and overall survival as compared to those with negative MRD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Akahoshi Y. Minimal residual disease (MRD) positivity at allogeneic hematopoietic cell transplantation, not the quantity of MRD, is a risk factor for relapse of Philadelphia chromosome-positive acute lymphoblastic leukemia. Int J Hematol. 2021;113(6):832–9. https://doi.org/10.1007/s12185-021-03094-x.

    Article  CAS  PubMed  Google Scholar 

  42. • Li S. Different effects of pre-transplantation measurable residual disease on outcomes according to transplant modality in patients with Philadelphia chromosome positive ALL. Front Oncol. 2020;10:320. https://doi.org/10.3389/fonc.2020.00320. This retrospective study evaluated the effects of MRD positivity prior to allogeneic HCT for management of Philadelphia chromosome positive ALL and revealed that haploidentical HCT was related to higher probability of survival and lower incidences of relapse as compared to matched sibling donor HCT in this patient population.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee S. The extent of minimal residual disease reduction after the first 4-week imatinib therapy determines outcome of allogeneic stem cell transplantation in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer. 2009;115(3):561–70. https://doi.org/10.1002/cncr.24026.

    Article  CAS  PubMed  Google Scholar 

  44. Lee S. Impact of minimal residual disease kinetics during imatinib-based treatment on transplantation outcome in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 2012;26(11):2367–74. https://doi.org/10.1038/leu.2012.164.

    Article  CAS  PubMed  Google Scholar 

  45. Lou Y. Efficacy and prognostic factors of imatinib plus CALLG2008 protocol in adult patients with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Med. 2017;11(2):229–38. https://doi.org/10.1007/s11684-017-0506-y.

    Article  PubMed  Google Scholar 

  46. Lussana F. Achieving molecular remission before allogeneic stem cell transplantation in adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: impact on relapse and long-term outcome. Biol Blood Marrow Transplant. 2016;22(11):1983–7. https://doi.org/10.1016/j.bbmt.2016.07.021.

    Article  PubMed  Google Scholar 

  47. Mizuta S. Prognostic factors influencing clinical outcome of allogeneic hematopoietic stem cell transplantation following imatinib-based therapy in BCR-ABL-positive ALL. Blood Cancer J. 2012;2(5):e72. https://doi.org/10.1038/bcj.2012.18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nishiwaki S. Impact of MRD and TKI on allogeneic hematopoietic cell transplantation for Ph+ALL: a study from the adult ALL WG of the JSHCT. Bone Marrow Transplant. 2016;51(1):43–50. https://doi.org/10.1038/bmt.2015.217.

    Article  CAS  PubMed  Google Scholar 

  49. Akahoshi Y. Reduced-intensity conditioning is a reasonable alternative for Philadelphia chromosome-positive acute lymphoblastic leukemia among elderly patients who have achieved negative minimal residual disease: a report from the Adult Acute Lymphoblastic Leukemia Working Group of the JSHCT. Bone Marrow Transplant. 2020;55(7):1317–25. https://doi.org/10.1038/s41409-020-0951-0.

    Article  CAS  PubMed  Google Scholar 

  50. Bachanova V. Ph+ ALL patients in first complete remission have similar survival after reduced intensity and myeloablative allogeneic transplantation: impact of tyrosine kinase inhibitor and minimal residual disease. Leukemia. 2014;28(3):658–65. https://doi.org/10.1038/leu.2013.253.

    Article  CAS  PubMed  Google Scholar 

  51. Terwey T. Comparison of chimerism and minimal residual disease monitoring for relapse prediction after allogeneic stem cell transplantation for adult acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2014;20(10):1522–9. https://doi.org/10.1016/j.bbmt.2014.05.026.

    Article  PubMed  Google Scholar 

  52. Zhao X. Monitoring MRD with flow cytometry: an effective method to predict relapse for ALL patients after allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2012;91(2):183–92. https://doi.org/10.1007/s00277-011-1285-1.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou Y. The effect of peritransplant minimal residual disease in adults with acute lymphoblastic leukemia undergoing allogeneic hematopoietic stem cell transplantation. Clin Lymphoma Myeloma Leuk. 2014;14(4):319–26. https://doi.org/10.1016/j.clml.2014.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Miyamura K. Detection of Philadelphia chromosome-positive acute lymphoblastic leukemia by polymerase chain reaction: possible eradication of minimal residual disease by marrow transplantation. Blood. 1992;79(5):1366–70.

    Article  CAS  Google Scholar 

  55. Radich J. Detection of bcr-abl transcripts in Philadelphia chromosome-positive acute lymphoblastic leukemia after marrow transplantation. Blood. 1997;89(7):2602–9.

    Article  CAS  Google Scholar 

  56. Stirewalt DL. Predictors of relapse and overall survival in Philadelphia chromosome-positive acute lymphoblastic leukemia after transplantation. Biol Blood Marrow Transplant. 2003;9(3):206–12. https://doi.org/10.1053/bbmt.2003.50025.

    Article  PubMed  Google Scholar 

  57. Zhao X. Comparative analysis of flow cytometry and RQ-PCR for the detection of minimal residual disease in Philadelphia chromosome-positive acute lymphoblastic leukemia after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2018;24(9):1936–43. https://doi.org/10.1016/j.bbmt.2018.03.015.

    Article  CAS  PubMed  Google Scholar 

  58. Candoni A. Outcome of allogeneic hematopoietic stem cell transplantation in adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia in the era of tyrosine kinase inhibitors: a registry-based study of the Italian Blood and Marrow Transplantation Society (GITMO). Biol Blood Marrow Transplant. 2019;25(12):2388–97. https://doi.org/10.1016/j.bbmt.2019.07.037.

    Article  CAS  PubMed  Google Scholar 

  59. Chen H. Administration of imatinib after allogeneic hematopoietic stem cell transplantation may improve disease-free survival for patients with Philadelphia chromosome-positive acute lymphobla stic leukemia. J Hematol Oncol. 2012;5:29. https://doi.org/10.1186/1756-8722-5-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pfeifer H. Randomized comparison of prophylactic and minimal residual disease-triggered imatinib after allogeneic stem cell transplantation for BCR-ABL1-positive acute lymphoblastic leukemia. Leukemia. 2013;27(6):1254–62. https://doi.org/10.1038/leu.2012.352.

    Article  CAS  PubMed  Google Scholar 

  61. Löffler A. A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 2000;95(6):2098–103.

    Article  Google Scholar 

  62. Kantarjian H. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836–47. https://doi.org/10.1056/NEJMoa1609783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martinelli G. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol. 2017;35(16):1795–802. https://doi.org/10.1200/JCO.2016.69.3531.

    Article  CAS  PubMed  Google Scholar 

  64. Topp MS. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29(18):2493–8. https://doi.org/10.1200/JCO.2010.32.7270.

    Article  CAS  PubMed  Google Scholar 

  65. Topp MS. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012;120(26):5185–7. https://doi.org/10.1182/blood-2012-07-441030.

    Article  CAS  PubMed  Google Scholar 

  66. Zugmaier G. Long-term survival and T-cell kinetics in relapsed/refractory ALL patients who achieved MRD response after blinatumomab treatment. Blood. 2015;126(24):2578–84. https://doi.org/10.1182/blood-2015-06-649111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. • Gökbuget N. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131(14):1522–31. https://doi.org/10.1182/blood-2017-08-798322. This prospective, single-arm, phase II study showed that a majority of patients in hematologic remission with MRD positivity after chemotherapy achieved a complete MRD response to blinatumomab and a significant OS improvement in MRD responders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. DiJoseph JF. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004;103(5):1807–14. https://doi.org/10.1182/blood-2003-07-2466.

    Article  CAS  PubMed  Google Scholar 

  69. Kantarjian HM. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53. https://doi.org/10.1056/NEJMoa1509277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stock W. Efficacy of inotuzumab ozogamicin in patients with Philadelphia chromosome-positive relapsed/refractory acute lymphoblastic leukemia. Cancer. 2021;127(6):905–13. https://doi.org/10.1002/cncr.33321.

    Article  CAS  PubMed  Google Scholar 

  71. Park JH. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. https://doi.org/10.1056/NEJMoa1709919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shah BD. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet. 2021;398(10299):491–502. https://doi.org/10.1016/S0140-6736(21)01222-8.

    Article  CAS  PubMed  Google Scholar 

  73. van der Velden VH. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21(4):604–11. https://doi.org/10.1038/sj.leu.2404586.

    Article  CAS  PubMed  Google Scholar 

  74. Riva G. Multiparametric flow cytometry for MRD monitoring in hematologic malignancies: clinical applications and new challenges. Cancers (Basel). 2021;13(18):4582. https://doi.org/10.3390/cancers13184582.

    Article  CAS  Google Scholar 

  75. DiGiuseppe JA. Applications of flow cytometric immunophenotyping in the diagnosis and posttreatment monitoring of B and T lymphoblastic leukemia/lymphoma. Cytometry B Clin Cytom. 2019;96(4):256–65. https://doi.org/10.1002/cyto.b.21833.

    Article  PubMed  Google Scholar 

  76. Theunissen P. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 2017;129(3):347–57. https://doi.org/10.1182/blood-2016-07-726307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Al-Mawali A. The role of multiparameter flow cytometry for detection of minimal residual disease in acute Myeloid Leukemia. Am J Clin Pathol. 2009;131(1):16–26. https://doi.org/10.1309/AJCP5TSD3DZXFLCX.

    Article  PubMed  Google Scholar 

  78. Brüggemann M. Has MRD monitoring superseded other prognostic factors in adult ALL? Blood. 2012;120(23):4470–81. https://doi.org/10.1182/blood-2012-06-379040.

    Article  CAS  PubMed  Google Scholar 

  79. Modvig S. Value of flow cytometry for MRD-based relapse prediction in B-cell precursor ALL in a multicenter setting. Leukemia. 2021;35(7):1894–906. https://doi.org/10.1038/s41375-020-01100-5.

    Article  CAS  PubMed  Google Scholar 

  80. Alekseyev YO. A next-generation sequencing primer—how does it work and what can it do? Acad Pathol. 2018;5:2374289518766521. https://doi.org/10.1177/2374289518766521.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kruse A. Minimal residual disease detection in acute lymphoblastic leukemia. Int J Mol Sci. 2020;21(3):1054. https://doi.org/10.3390/ijms21031054.

    Article  CAS  PubMed Central  Google Scholar 

  82. Faham M. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2012;120(26):5173–80. https://doi.org/10.1182/blood-2012-07-444042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Panuzzo C. Revealing the mysteries of acute myeloid leukemia: from quantitative PCR through next-generation sequencing and systemic metabolomic profiling. J Clin Med. 2022;11(3):483. https://doi.org/10.3390/jcm11030483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sala Torra O. Next-generation sequencing in adult B cell acute lymphoblastic leukemia patients. Biol Blood Marrow Transplant. 2017;23(4):691–6. https://doi.org/10.1016/j.bbmt.2016.12.639.

    Article  CAS  PubMed  Google Scholar 

  85. Pulsipher MA. IgH-V(D) J NGS-MRD measurement pre- and early post-allotransplant defines very low- and very high-risk ALL patients. Blood. 2015;125(22):3501–8. https://doi.org/10.1182/blood-2014-12-615757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kotrova M. Is next-generation sequencing the way to go for residual disease monitoring in acute lymphoblastic leukemia? Mol Diagn Ther. 2017;21(5):481–92. https://doi.org/10.1007/s40291-017-0277-9.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang J. Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing. Brief Bioinform. 2014;15(2):244–55. https://doi.org/10.1093/bib/bbt042.

    Article  PubMed  Google Scholar 

  88. Brüggemann M. Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia. 2019;33(9):2241–53. https://doi.org/10.1038/s41375-019-0496-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rellick SL. Co-culture model of B-cell acute lymphoblastic leukemia recapitulates a transcription signature of chemotherapy-refractory minimal residual disease. Sci Rep. 2021;11(1):15840. https://doi.org/10.1038/s41598-021-95039-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hong Y. Identification of immune subtypes of Ph-neg B-ALL with ferroptosis related genes and the potential implementation of Sorafenib. BMC Cancer. 2021;21(1):1331. https://doi.org/10.1186/s12885-021-09076-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Merli P. Minimal residual disease prior to and after haematopoietic stem cell transplantation in children and adolescents with acute lymphoblastic leukaemia: what level of negativity is relevant? Front Pediatr. 2021;9:777108. https://doi.org/10.3389/fped.2021.777108.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Tüfekçi Ö. Assessment of minimal residual disease in childhood acute lymphoblastic leukemia: a multicenter study from Turkey. J Pediatr Hematol Oncol. 2022;44(2):e396–402. https://doi.org/10.1097/MPH.0000000000002419.

    Article  CAS  PubMed  Google Scholar 

  93. Huang YJ. Comparison of two quantitative PCR-based assays for detection of minimal residual disease in B-precursor acute lymphoblastic leukemia harboring three major fusion transcripts. J Mol Diagn. 2021;23(10):1373–9. https://doi.org/10.1016/j.jmoldx.2021.07.008.

    Article  CAS  PubMed  Google Scholar 

  94. Flohr T. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 2008;22(4):771–82. https://doi.org/10.1038/leu.2008.5.

    Article  CAS  PubMed  Google Scholar 

  95. van der Velden VH. MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR. Methods Mol Biol. 2009;538:115–50. https://doi.org/10.1007/978-1-59745-418-6_7.

    Article  CAS  PubMed  Google Scholar 

  96. Germano G. Clonality profile in relapsed precursor-B-ALL children by GeneScan and sequencing analyses. Consequences on minimal residual disease monitoring. Leukemia. 2003;17(8):1573–82. https://doi.org/10.1038/sj.leu.2403008.

    Article  CAS  PubMed  Google Scholar 

  97. Monter A. ClonoSEQ assay for the detection of lymphoid malignancies. Expert Rev Mol Diagn. 2019;19(7):571–8. https://doi.org/10.1080/14737159.2019.1627877.

    Article  CAS  PubMed  Google Scholar 

  98. Walzer S. A cost impact analysis of clonoSEQ. Oncol Ther. 2021;9(2):607–19. https://doi.org/10.1007/s40487-021-00169-x.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hussaini MO. Assessment of clonotypic rearrangements and minimal residual disease in lymphoid malignancies. Arch Pathol Lab Med. 2022;146(4):485–93. https://doi.org/10.5858/arpa.2020-0457-OA.

    Article  PubMed  Google Scholar 

  100. • Kotrova M. Comparison of minimal residual disease levels in bone marrow and peripheral blood in adult acute lymphoblastic leukemia. Leukemia. 2020;34(4):1154–7. https://doi.org/10.1038/s41375-019-0599-1. This retrospective study evaluated bone marrow and peripheral blood sample pairs from B-ALL and T-ALL patients using EuroMRD allele-specific oligonucleotide RQ-PCR and EuroMRD guidelines and revealed stronger correlation of MRD in bone marrow and peripheral blood in T-cell ALL when compared to B-cell ALL.

    Article  PubMed  Google Scholar 

  101. Brisco MJ. Monitoring minimal residual disease in peripheral blood in B-lineage acute lymphoblastic leukaemia. Br J Haematol. 1997;99(2):314–9. https://doi.org/10.1046/j.1365-2141.1997.3723186.x.

    Article  CAS  PubMed  Google Scholar 

  102. van der Velden VH. Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia. 2002;16(8):1432–6. https://doi.org/10.1038/sj.leu.2402636.

    Article  PubMed  Google Scholar 

  103. Muffly L. Concordance of peripheral blood and bone marrow measurable residual disease in adult acute lymphoblastic leukemia. Blood Adv. 2021;5(16):3147–51. https://doi.org/10.1182/bloodadvances.2021004234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Keegan A. Flow cytometric minimal residual disease assessment of peripheral blood in acute lymphoblastic leukaemia patients has potential for early detection of relapsed extramedullary disease. J Clin Pathol. 2018;71(7):653–8. https://doi.org/10.1136/jclinpath-2017-204828.

    Article  CAS  PubMed  Google Scholar 

  105. Pemmaraju N. Significance of recurrence of minimal residual disease detected by multi-parameter flow cytometry in patients with acute lymphoblastic leukemia in morphological remission. Am J Hematol. 2017;92(3):279–85. https://doi.org/10.1002/ajh.24629.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Spyridonidis A. How I treat measurable (minimal) residual disease in acute leukemia after allogeneic hematopoietic cell transplantation. Blood. 2020;135(19):1639–49. https://doi.org/10.1182/blood.2019003566.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firas El Chaer.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Acute Lymphocytic Leukemia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierce, E., Mautner, B., Mort, J. et al. MRD in ALL: Optimization and Innovations. Curr Hematol Malig Rep 17, 69–81 (2022). https://doi.org/10.1007/s11899-022-00664-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-022-00664-6

Keywords

Navigation