Skip to main content

Advertisement

Log in

Small-Molecule Inhibitors for the Treatment of Diffuse Large B Cell Lymphoma

  • B-cell NHL, T-cell NHL, and Hodgkin Lymphoma (J Amengual, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Diffuse large B cell lymphoma (DLBCL) remains the most common non-Hodgkin lymphoma (NHL) in developed countries. Up to 30–40% of patients experience either refractory or relapsed disease following receipt of front-line chemoimmunotherapy, and the majority of these patients will not be cured following receipt of subsequent therapy.

Recent Findings

Small-molecule inhibitors (SMIs) are an attractive class of therapeutics for patients with chemorefractory DLBCL, and early-phase studies with these agents have typically demonstrated prolonged periods of disease control in responding patients without significant toxicity. Later-phase studies have investigated the combination of SMIs with cytotoxic agents in hopes that exposure to SMIs in the treatment course may improve outcomes for patients who would otherwise develop chemorefractory disease.

Summary

SMIs appear to be effective in the treatment of DLBCL. A greater understanding of the molecular features of cases of DLBCL will allow for the more rational and presumably successful utilization of these targeted agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Coiffier B, Thieblemont C, Van Den Neste E, Lepeu G, Plantier I, Castaigne S, et al. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood. 2010;116(12):2040–5. https://doi.org/10.1182/blood-2010-03-276,246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kewalramani T, Zelenetz AD, Nimer SD, Portlock C, Straus D, Noy A, et al. Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma. Blood. 2004;103(10):3684–8. https://doi.org/10.1182/blood-2003-11-3911.

    Article  CAS  PubMed  Google Scholar 

  3. Gisselbrecht C, Glass B, Mounier N, Singh Gill D, Linch DC, Trneny M, et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol. 2010;28(27):4184–90. https://doi.org/10.1200/JCO.2010.28.1618.

    Article  PubMed  PubMed Central  Google Scholar 

  4. •• Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44. https://doi.org/10.1056/NEJMoa1707447. This Phase II study of 110 patients demonstrated 90% success rate for manufacturing axicabtagene ciloleucel CART therapy. ORR was 82%, with CR 54% that was durable in 42% of patients. These results were the basis of the FDA approval for relapsed/refractory DLBCL.

    Article  PubMed  PubMed Central  Google Scholar 

  5. •• Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak O, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–54. https://doi.org/10.1056/NEJMoa1708566. This Phase II study of 28 patients with R/R DLBCL and FL received tisangenlecleucel, with an ORR 64%, with43% CR in patients with DLBCL and 71% CR in patients with FL. This data led to the recent approval of tisangenlecleucel in patients with R/R DLBCL and FL.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. https://doi.org/10.1038/35000501.

    Article  CAS  PubMed  Google Scholar 

  7. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82. https://doi.org/10.1182/blood-2003-05-1545.

    Article  CAS  Google Scholar 

  8. Gutierrez-Garcia G, Cardesa-Salzmann T, Climent F, Gonzalez-Barca E, Mercadal S, Mate JL, et al. Gene-expression profiling and not immunophenotypic algorithms predicts prognosis in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Blood. 2011;117(18):4836–43. https://doi.org/10.1182/blood-2010-12-322,362.

    Article  CAS  PubMed  Google Scholar 

  9. • Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937–47. https://doi.org/10.1056/NEJMoa012914. This study demonstrated different molecular signatures of DLBCL patients, and noted differences in survival between the three groups, with activated B cell like portending a poor prognosis.

    Article  PubMed  Google Scholar 

  10. Barrans S, Crouch S, Smith A, Turner K, Owen R, Patmore R, et al. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J Clin Oncol. 2010;28(20):3360–5. https://doi.org/10.1200/jco.2009.26.3947.

    Article  CAS  PubMed  Google Scholar 

  11. Savage KJ, Johnson NA, Ben-Neriah S, Connors JM, Sehn LH, Farinha P, et al. MYC-gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood. 2009;114(17):3533–7. https://doi.org/10.1182/blood-2009-05-220,095.

    Article  CAS  PubMed  Google Scholar 

  12. Landsburg D, Falkiewicz M, Petrich A, Chu B, Amir B, Shaoying L, et al. Sole rearrangement but not amplification of MYC is associated with a poor prognosis in patients with diffuse large B cell lymphoma and B cell lymphoma unclassifiable. British Journal of Hematology. 2016;175(4):631–40. https://doi.org/10.1111/bjh.14282.

    Article  CAS  Google Scholar 

  13. Johnson NA, Slack GW, Savage KJ, Connors JM, Ben-Neriah S, Rogic S, et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30(28):3452–9. https://doi.org/10.1200/jco.2011.41.0985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Green TM, Young KH, Visco C, Xu-Monette ZY, Orazi A, Go RS, et al. Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30(28):3460–7. https://doi.org/10.1200/jco.2011.41.4342.

    Article  CAS  Google Scholar 

  15. Hu S, Xu-Monette ZY, Tzankov A, Green T, Wu L, Balasubramanyam A, et al. MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program. Blood. 2013;121(20):4021–31. https://doi.org/10.1182/blood-2012-10-460,063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. • Wilson WH, Young RM, Schmitz R, Yang Y, Pittaluga S, Wright G, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med. 2015;21(8):922–6. https://doi.org/10.1038/nm.3884. This Phase 1/2 study of ibrutinib in R/R DLBCL demonstrated a 40% ORR in patients with ABC subtype, making this an attractive option in the R/R setting for these patients.

    Article  CAS  PubMed  Google Scholar 

  17. Sauter CS, Matasar MJ, Schoder H, Devlin SM, Drullinsky P, Gerecitano J, et al. A phase 1 study of ibrutinib in combination with R-ICE in patients with relapsed or primary refractory DLBCL. Blood. 2018;131(16):1805–8. https://doi.org/10.1182/blood-2017-08-802,561.

    Article  PubMed  CAS  Google Scholar 

  18. Younes A, Thieblemont C, Morschhauser F, Flinn I, Friedberg JW, Amorim S, et al. Combination of ibrutinib with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for treatment-naive patients with CD20-positive B-cell non-Hodgkin lymphoma: a non-randomized, phase 1b study. Lancet Oncol. 2014;15(9):1019–26. https://doi.org/10.1016/S1470-2045(14)70311-0.

    Article  CAS  PubMed  Google Scholar 

  19. Kuruvilla J, Crump M, Villa D, Aslam M, Prica A, Scott DW, et al. Canadian cancer trials group (CCTG) LY.17: a randomized phase II study evaluating novel salvage therapy pre-autologous stem cell transplant (ASCT) in relapsed/refractory diffuse large B cell lymphoma (RR-DLBCL)—outcome of ibrutinib + R-GDP. Hematol Oncol. 2017;35(S2):88. https://doi.org/10.1002/hon.2437_76.

    Article  Google Scholar 

  20. Westin JR, Oki Y, Fayad L, Nastoupil LJ, Turturro F, Hagemeister FB, et al. Rituximab, lenalidomide, and ibrutinib alone and combined with chemotherapy for patients with newly diagnosed diffuse large B-cell lymphoma. Hematol Oncol. 2017;35(S2):190–1. https://doi.org/10.1002/hon.2438_51.

    Article  Google Scholar 

  21. Dreyling M, Morschhauser F, Bouabdallah K, Bron D, Cunningham D, Assouline SE, et al. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann Oncol. 2017;28(9):2169–78. https://doi.org/10.1093/annonc/mdx289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zang C, Eucker J, Liu H, Coordes A, Lenarz M, Possinger K, et al. Inhibition of pan-class I phosphatidyl-inositol-3-kinase by NVP-BKM120 effectively blocks proliferation and induces cell death in diffuse large B-cell lymphoma. Leuk Lymphoma. 2014;55(2):425–34. https://doi.org/10.3109/10428194.2013.806800.

    Article  CAS  PubMed  Google Scholar 

  23. Deng C, Lipstein MR, Scotto L, Jirau Serrano XO, Mangone MA, Li S, et al. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies. Blood. 2017;129(1):88–99. https://doi.org/10.1182/blood-2016-08-731,240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burris HA 3rd, Flinn IW, Patel MR, Fenske TS, Deng C, Brander DM, et al. Umbralisib, a novel PI3Kdelta and casein kinase-1epsilon inhibitor, in relapsed or refractory chronic lymphocytic leukemia and lymphoma: an open-label, phase 1, dose-escalation, first-in-human study. Lancet Oncol. 2018;19(4):486–96. https://doi.org/10.1016/S1470-2045(18)30082-2.

    Article  CAS  PubMed  Google Scholar 

  25. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood. 2010;115(13):2578–85. https://doi.org/10.1182/blood-2009-08-236,471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lam B, Arikawa Y, Cramlett J, Dong Q, de Jong R, Feher V, et al. Discovery of TAK-659 an orally available investigational inhibitor of spleen tyrosine kinase (SYK). Bioorg Med Chem Lett. 2016;26(24):5947–50. https://doi.org/10.1016/j.bmcl.2016.10.087.

    Article  CAS  PubMed  Google Scholar 

  27. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–8. https://doi.org/10.1038/nm.3048.

    Article  CAS  PubMed  Google Scholar 

  28. Ackler S, Oleksijew A, Chen J, Chyla BJ, Clarin J, Foster K, et al. Clearance of systemic hematologic tumors by venetoclax (Abt-199) and navitoclax. Pharmacol Res Perspect. 2015;3(5):e00178. https://doi.org/10.1002/prp2.178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marchion DC, Bicaku E, Turner JG, Daud AI, Sullivan DM, Munster PN. Synergistic interaction between histone deacetylase and topoisomerase II inhibitors is mediated through topoisomerase IIbeta. Clin Cancer Res. 2005;11(23):8467–75. https://doi.org/10.1158/1078-0432.CCR-05-1073.

    Article  CAS  PubMed  Google Scholar 

  30. Fournel M, Bonfils C, Hou Y, Yan PT, Trachy-Bourget MC, Kalita A, et al. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol Cancer Ther. 2008;7(4):759–68. https://doi.org/10.1158/1535-7163.MCT-07-2026.

    Article  CAS  PubMed  Google Scholar 

  31. Younes A, Berdeja JG, Patel MR, Flinn I, Gerecitano JF, Neelapu SS, et al. Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol. 2016;17(5):622–31. https://doi.org/10.1016/S1470-2045(15)00584-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oki Y, Kelly KR, Flinn I, Patel MR, Gharavi R, Ma A, et al. CUDC-907 in relapsed/refractory diffuse large B-cell lymphoma, including patients with MYC-alterations: results from an expanded phase I trial. Haematologica. 2017;102(11):1923–30. https://doi.org/10.3324/haematol.2017.172882.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Abramson JS, Blum KA, Flinn IW, Gutierrez M, Goy A, Maris M, et al. BET inhibitor CPI-0610 is well tolerated and induces responses in diffuse large B-cell lymphoma and follicular lymphoma: preliminary analysis of an ongoing phase 1 study. Blood. 2015;126(23):1491.

    Google Scholar 

  34. Wright JJ. Combination therapy of bortezomib with novel targeted agents: an emerging treatment strategy. Clin Cancer Res. 2010;16(16):4094–104. https://doi.org/10.1158/1078-0432.Ccr-09-2882.

    Article  CAS  PubMed  Google Scholar 

  35. Fenske TS, Shah NM, Kim KM, Saha S, Zhang C, Baim AE, et al. A phase 2 study of weekly temsirolimus and bortezomib for relapsed or refractory B-cell non-Hodgkin lymphoma: a Wisconsin Oncology Network study. Cancer. 2015;121(19):3465–71. https://doi.org/10.1002/cncr.29502.

    Article  CAS  PubMed  Google Scholar 

  36. Barnes JA, Jacobsen E, Feng Y, Freedman A, Hochberg EP, LaCasce AS, et al. Everolimus in combination with rituximab induces complete responses in heavily pretreated diffuse large B-cell lymphoma. Haematologica. 2013;98(4):615–9. https://doi.org/10.3324/haematol.2012.075184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnston PB, LaPlant B, McPhail E, Habermann TM, Inwards DJ, Micallef IN, et al. Everolimus combined with R-CHOP-21 for new, untreated, diffuse large B-cell lymphoma (NCCTG 1085 [Alliance]): safety and efficacy results of a phase 1 and feasibility trial. Lancet Haematol. 2016;3(7):e309–16. https://doi.org/10.1016/S2352-3026(16)30040-0.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ling YH, Liebes L, Ng B, Buckley M, Elliott PJ, Adams J, et al. PS-341, a novel proteasome inhibitor, induces Bcl-2 phosphorylation and cleavage in association with G2-M phase arrest and apoptosis. Mol Cancer Ther. 2002;1(10):841–9.

    CAS  PubMed  Google Scholar 

  39. Offner F, Samoilova O, Osmanov E, Eom HS, Topp MS, Raposo J, et al. Frontline rituximab, cyclophosphamide, doxorubicin, and prednisone with bortezomib (VR-CAP) or vincristine (R-CHOP) for non-GCB DLBCL. Blood. 2015;126(16):1893–901. https://doi.org/10.1182/blood-2015-03-632,430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kupperman E, Lee EC, Cao Y, Bannerman B, Fitzgerald M, Berger A, et al. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res. 2010;70(5):1970–80. https://doi.org/10.1158/0008-5472.CAN-09-2766.

    Article  CAS  PubMed  Google Scholar 

  41. Lee EC, Fitzgerald M, Bannerman B, Donelan J, Bano K, Terkelsen J, et al. Antitumor activity of the investigational proteasome inhibitor MLN9708 in mouse models of B-cell and plasma cell malignancies. Clin Cancer Res. 2011;17(23):7313–23. https://doi.org/10.1158/1078-0432.CCR-11-0636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Assouline SE, Chang J, Cheson BD, Rifkin R, Hamburg S, Reyes R, et al. Phase 1 dose-escalation study of IV ixazomib, an investigational proteasome inhibitor, in patients with relapsed/refractory lymphoma. Blood Cancer J. 2014;4:e251. https://doi.org/10.1038/bcj.2014.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuruvilla J, Savona M, Baz R, Mau-Sorensen PM, Gabrail N, Garzon R, et al. Selective inhibition of nuclear export with selinexor in patients with non-Hodgkin lymphoma. Blood. 2017;129(24):3175–83. https://doi.org/10.1182/blood-2016-11-750,174.

    Article  CAS  PubMed  Google Scholar 

  44. Monroe JG. ITAM-mediated tonic signaling through pre-BCR and BCR complexes. Nat Rev Immunol. 2006;6(4):283–94. https://doi.org/10.1038/nri1808.

    Article  CAS  PubMed  Google Scholar 

  45. Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci. 1997;22(7):267–72.

    Article  CAS  PubMed  Google Scholar 

  46. Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ, et al. The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood. 2011;118(13):3603–12. https://doi.org/10.1182/blood-2011-05-352,492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM, et al. Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 2010;116(12):2078–88. https://doi.org/10.1182/blood-2010-02-271,171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42. https://doi.org/10.1056/NEJMoa1215637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang ML, Blum KA, Martin P, Goy A, Auer R, Kahl BS, et al. Long-term follow-up of MCL patients treated with single-agent ibrutinib: updated safety and efficacy results. Blood. 2015;126(6):739–45. https://doi.org/10.1182/blood-2015-03-635,326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Treon SP, Tripsas CK, Meid K, Warren D, Varma G, Green R, et al. Ibrutinib in previously treated Waldenstrom’s macroglobulinemia. N Engl J Med. 2015;372(15):1430–40. https://doi.org/10.1056/NEJMoa1501548.

    Article  CAS  PubMed  Google Scholar 

  51. Noy A, de Vos S, Thieblemont C, Martin P, Flowers CR, Morschhauser F, et al. Targeting Bruton tyrosine kinase with ibrutinib in relapsed/refractory marginal zone lymphoma. Blood. 2017;129(16):2224–32. https://doi.org/10.1182/blood-2016-10-747,345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Winter AM, Landsburg DJ, Mato AR, Isaac K, Hernandez-Ilizaliturri FJ, Reddy N, et al. A multi-institutional outcomes analysis of patients with relapsed or refractory DLBCL treated with ibrutinib. Blood. 2017; https://doi.org/10.1182/blood-2017-05-786,988.

  53. Young RM, Shaffer AL, Phelan JD, Staudt LM. B cell receptor signaling in diffuse large B cell lymphoma. Semin Hematol. 2015;52(2):77–85. https://doi.org/10.1053/j.seminhematol.2015.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lenz G, Hawkes E, Verhoef G, Haioun C, Lim S, Heo D, et al. Clinical outcomes and molecular characterization from a phase II study of copanlisib in patients with relapsed or refractory diffuse large B-cell lymphoma. Hematol Oncol. 2017;35(S2):68–9. https://doi.org/10.1002/hon.2437_56.

    Article  Google Scholar 

  55. Foukas LC, Berenjeno IM, Gray A, Khwaja A, Vanhaesebroeck B. Activity of any class IA PI3K isoform can sustain cell proliferation and survival. Proc Natl Acad Sci. 2010;107(25):11381–6. https://doi.org/10.1073/pnas.0906461107.

    Article  PubMed  Google Scholar 

  56. Younes A, Salles G, Martinelli G, Bociek RG, Barrigon DC, Barca EG, et al. Pan-phosphatidylinositol 3-kinase inhibition with buparlisib in patients with relapsed or refractory non-Hodgkin lymphoma. Haematologica. 2017;102(12):2104–12. https://doi.org/10.3324/haematol.2017.169656.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Paul J, Soujon M, Wengner AM, Zitzmann-Kolbe S, Sturz A, Haike K, et al. Molecular mechanisms and combination strategies with PI3K and BTK inhibitors to overcome intrinsic and acquired resistance in preclinical models of ABC-DLBCL. Hematol Oncol. 2017;35(S2):403–4. https://doi.org/10.1002/hon.2439_179.

    Article  Google Scholar 

  58. Batlevi C, Hamlin P, Matasar MJ, Younes A, et al. Phase I/IB dose escalation and expansion of ibrutinib and buparlisib in relapsed/refractory diffuse large B-cell lymphoma, mantle cell lymphoma, and follicular lymphoma. Hematol Oncol. 2017;35(S2):54. https://doi.org/10.1002/hon.2437_38.

    Article  Google Scholar 

  59. Lunning MA, Vose JM, Bierman PJ, Bociek G, Schreeder MT, Siddiqi T, et al. Combination of TGR-1202, ublituximab, and bendamustine is safe and highly active in patients with advanced DLBCL and follicular lymphoma. Hematol Oncol. 2017;35(S2):266–7. https://doi.org/10.1002/hon.2438_137.

    Article  Google Scholar 

  60. Chen L, Monti S, Juszczynski P, Daley J, Chen W, Witzig TE, et al. SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood. 2008;111(4):2230–7. https://doi.org/10.1182/blood-2007-07-100,115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Flinn IW, Bartlett NL, Blum KA, Ardeshna KM, LaCasce AS, Flowers CR, et al. A phase II trial to evaluate the efficacy of fostamatinib in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL). Eur J Cancer. 2016;54:11–7. https://doi.org/10.1016/j.ejca.2015.10.005.

    Article  CAS  PubMed  Google Scholar 

  62. Kaplan J, Gordon L, Infante J, Popat R, Rambaldi A, Madan S, et al. TAK-659, An investigational reversible dual SYK/FLT-3 inhibitor, in patients with lymphoma: updated results from dose-escalation and expansion cohorts of a phase 1 study. Hematol Oncol. 2017;35(S2):72–4. https://doi.org/10.1002/hon.2437_60.

    Article  Google Scholar 

  63. Barr PM, Saylors GB, Spurgeon SE, Cheson BD, Greenwald DR, O’Brien SM, et al. Phase 2 study of idelalisib and entospletinib: pneumonitis limits combination therapy in relapsed refractory CLL and NHL. Blood. 2016;127(20):2411–5. https://doi.org/10.1182/blood-2015-12-683,516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang JZ, Sanger WG, Greiner TC, Staudt LM, Weisenburger DD, Pickering DL, et al. The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood. 2002;99(7):2285–90.

    Article  CAS  PubMed  Google Scholar 

  65. Roberts AW, Huang D. Targeting BCL2 With BH3 Mimetics: Basic science and clinical application of venetoclax in chronic lymphocytic leukemia and related B cell malignancies. Clin Pharmacol Ther. 2017;101(1):89–98. https://doi.org/10.1002/cpt.553.

    Article  CAS  PubMed  Google Scholar 

  66. Stilgenbauer S, Eichhorst B, Schetelig J, Coutre S, Seymour JF, Munir T, et al. Venetoclax in relapsed or refractory chronic lymphocytic leukemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol. 2016;17(6):768–78. https://doi.org/10.1016/S1470-2045(16)30019-5.

    Article  CAS  PubMed  Google Scholar 

  67. • Davids MS, Roberts AW, Seymour JF, Pagel JM, Kahl BS, Wierda WG, et al. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-Hodgkin lymphoma. J Clin Oncol. 2017;35(8):826–33. https://doi.org/10.1200/JCO.2016.70.4320. This Phase I study demonstrated that venetoclax is overall well tolerated, without any evidence of clinical tumor lysis in this population. ORR was 44%, but only 18% in patients wth DLBCL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zelenetz AD, Salles GA, Mason KD, Casulo C, Le Gouill S, Sehn LH, et al. Results of a phase Ib study of venetoclax plus R- or G-CHOP in patients with B-cell non-Hodgkin lymphoma. Blood. 2016;128(22):3032.

    Google Scholar 

  69. Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):311–22. https://doi.org/10.1056/NEJMoa1513257.

    Article  CAS  PubMed  Google Scholar 

  70. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471(7337):189–95. https://doi.org/10.1038/nature09730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bereshchenko OR, Gu W, Dalla-Favera R. Acetylation inactivates the transcriptional repressor BCL6. Nat Genet. 2002;32(4):606–13. https://doi.org/10.1038/ng1018.

    Article  CAS  PubMed  Google Scholar 

  72. Mann BS, Johnson JR, He K, Sridhara R, Abraham S, Booth BP, et al. Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin Cancer Res. 2007;13(8):2318–22. https://doi.org/10.1158/1078-0432.CCR-06-2672.

    Article  CAS  PubMed  Google Scholar 

  73. Coiffier B, Pro B, Prince HM, Foss F, Sokol L, Greenwood M, et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol. 2012;30(6):631–6. https://doi.org/10.1200/JCO.2011.37.4223.

    Article  CAS  PubMed  Google Scholar 

  74. O’Connor OA, Horwitz S, Masszi T, Van Hoof A, Brown P, Doorduijn J, et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol. 2015;33(23):2492–9. https://doi.org/10.1200/JCO.2014.59.2782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Straus DJ, Hamlin PA, Matasar MJ, Lia Palomba M, Drullinsky PR, Zelenetz AD, et al. Phase I/II trial of vorinostat with rituximab, cyclophosphamide, etoposide and prednisone as palliative treatment for elderly patients with relapsed or refractory diffuse large B-cell lymphoma not eligible for autologous stem cell transplantation. British Journal of Hematology. 2015;168(5):663–70. https://doi.org/10.1111/bjh.13195.

    Article  CAS  Google Scholar 

  76. Batlevi CL, Michael C, Charalambos A, David R, AS E, Susan F, et al. A phase 2 study of mocetinostat, a histone deacetylase inhibitor, in relapsed or refractory lymphoma. British Journal of Hematology. 2017;178(3):434–41. https://doi.org/10.1111/bjh.14698.

    Article  CAS  Google Scholar 

  77. Qian C, Lai CJ, Bao R, Wang DG, Wang J, Xu GX, et al. Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin Cancer Res. 2012;18(15):4104–13. https://doi.org/10.1158/1078-0432.CCR-12-0055.

    Article  CAS  PubMed  Google Scholar 

  78. Landsburg DJ, Ramchandren R, Oki Y, Pagel JM, Lugtenburg PJ, Gharavi R, et al. Objective responses achieved in patients with MYC-altered relapsed/refractory diffuse large B-cell lymphoma treated with the dual PI3K and HDAC inhibitor CUDC-907. Blood. 2017;130(Suppl 1):1555.

    Google Scholar 

  79. Panwalkar A, Verstovsek S, Giles FJ. Mammalian target of rapamycin inhibition as therapy for hematologic malignancies. Cancer. 2004;100(4):657–66. https://doi.org/10.1002/cncr.20026.

    Article  CAS  PubMed  Google Scholar 

  80. Wanner K, Hipp S, Oelsner M, Ringshausen I, Bogner C, Peschel C, et al. Mammalian target of rapamycin inhibition induces cell cycle arrest in diffuse large B cell lymphoma (DLBCL) cells and sensitizes DLBCL cells to rituximab. Br J Haematol. 2006;134(5):475–84. https://doi.org/10.1111/j.1365-2141.2006.06210.x.

    Article  CAS  PubMed  Google Scholar 

  81. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon Alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356(22):2271–81. https://doi.org/10.1056/NEJMoa066838.

    Article  CAS  PubMed  Google Scholar 

  82. Hess G, Herbrecht R, Romaguera J, Verhoef G, Crump M, Gisselbrecht C, et al. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2009;27(23):3822–9. https://doi.org/10.1200/jco.2008.20.7977.

    Article  CAS  PubMed  Google Scholar 

  83. Witzens-Harig M, Viardot A, Keller U, Buske C, Honig E, Atta J, et al. Safety and clinical activity of temsirolimus in combination with rituximab and DHAP in patients with relapsed or refractory diffuse large B-cell lymphoma–report of the prospective, multicenter phase II storm trial. Hematol Oncol. 2017;35(S2):191. https://doi.org/10.1002/hon.2438_52.

    Article  Google Scholar 

  84. •• Witzig TE, Tobinai K, Rigacci L, Ikeda T, Vanazzi A, Hino M, et al. Adjuvant everolimus in high-risk diffuse large B-cell lymphoma: final results from the PILLAR-2 randomized phase III trial. Ann Oncol. 2018;29(3):707–14. https://doi.org/10.1093/annonc/mdx764. This Phase III multicenter trial evaluated everolimus in the adjuvant setting and did not find a difference in DFS between everolimus or placebo (78% vs. 77% respectively).

    Article  CAS  PubMed  Google Scholar 

  85. Hershko A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr Opin Cell Biol. 1997;9(6):788–99. https://doi.org/10.1016/S0955-0674(97)80079-8.

    Article  CAS  PubMed  Google Scholar 

  86. Roff M, Thompson J, Rodriguez MS, Jacque J-M, Baleux F, Arenzana-Seisdedos F, et al. Role of IB ubiquitination in signal-induced activation of NF-B in vivo. J Biol Chem. 1996;271(13):7844–50. https://doi.org/10.1074/jbc.271.13.7844.

    Article  CAS  PubMed  Google Scholar 

  87. Dou QP, Li B. Proteasome inhibitors as potential novel anticancer agents. Drug Resist Updat. 1999;2(4):215–23. https://doi.org/10.1054/drup.1999.0095.

    Article  CAS  PubMed  Google Scholar 

  88. Niesvizky R, Flinn IW, Rifkin RM, Gabrail NY, Charu V, Clowney B, et al. Phase 3b upfront study: safety and efficacy of weekly bortezomib maintenance therapy after bortezomib-based induction regimens in elderly, Newly diagnosed multiple myeloma patients. Blood. 2010;116(21):619.

    Google Scholar 

  89. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003;348(26):2609–17. https://doi.org/10.1056/NEJMoa030288.

    Article  CAS  PubMed  Google Scholar 

  90. Dunleavy K, Pittaluga S, Czuczman MS, Dave SS, Wright G, Grant N, et al. Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood. 2009;113(24):6069–76. https://doi.org/10.1182/blood-2009-01-199,679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. •• Leonard JP, Kolibaba KS, Reeves JA, Tulpule A, Flinn IW, Kolevska T, et al. Randomized phase II study of R-CHOP with or without bortezomib in previously untreated patients with non-germinal center B-cell-like diffuse large b-cell lymphoma. J Clin Oncol. 2017;35(31):3538–46. https://doi.org/10.1200/JCO.2017.73.2784. This Phase II trial looked at the the addition of bortemib to R-CHOP chemoimmunotherapy in patients with non-GCB subtypes and did not find a difference between R-CHOP vs VR-CAP (ORR: 98 vs 96%, 2 year PFS: 77.6% vs. 82%) It is important to note that ORR and CR rates in the R-CHOP arm were higher than usually seen.

    Article  PubMed  Google Scholar 

  92. Fu K, Weisenburger DD, WWL C, Perry KD, Smith LM, Shi X, et al. Addition of rituximab to standard chemotherapy improves the survival of both the germinal center B-cell–like and non–germinal center B-cell–like subtypes of diffuse large B-cell lymphoma. J Clin Oncol. 2008;26(28):4587–94. https://doi.org/10.1200/jco.2007.15.9277.

    Article  CAS  PubMed  Google Scholar 

  93. Amorim S, Stathis A, Gleeson M, Iyengar S, Magarotto V, Leleu X, et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study. \Lancet Hematol. 2016;3(4):e196–204. https://doi.org/10.1016/S2352-3026(16)00021-1.

    Article  Google Scholar 

  94. Morschhauser F, McKay P, Salles G, et al. Interim report from a phase 2 multicenter study of tazemetostat, an EZH2 inhibitor, in patients with relapsed or refractory B-cell non-Hodgkin lymphomas. Hematol Oncol. 2017;35(S2):24–5. https://doi.org/10.1002/hon.2437_3.

    Article  Google Scholar 

  95. Lue J. Current Hematologic Malignancy Reports. 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Landsburg.

Ethics declarations

Conflicts of Interest

Daniel Landsburg reports other from Curis, Inc., other from Takeda, outside the submitted work. Joanna Rhodes has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on B-cell NHL, T-cell NHL, and Hodgkin Lymphoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhodes, J., Landsburg, D.J. Small-Molecule Inhibitors for the Treatment of Diffuse Large B Cell Lymphoma. Curr Hematol Malig Rep 13, 356–368 (2018). https://doi.org/10.1007/s11899-018-0467-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-018-0467-5

Keywords

Navigation