Skip to main content

Advertisement

Log in

Long-Term Side Effects of Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia

  • Chronic Myeloid Leukemias (J Pinilla-Ibarz, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Most patients with chronic myeloid leukemia have deep and durable responses when treated with BCR-ABL1 tyrosine kinase inhibitors (TKIs). Imatinib (the first approved TKI), nilotinib, and dasatinib are used in newly diagnosed, relapsed or intolerant patients, while bosutinib and ponatinib are used only in relapsed or intolerant patients. Previously the drug of choice was related to the likelihood of response and, to a small extent, patient comorbidities. The long-term toxicities, particularly cardiopulmonary side effects, are now impacting treatment choice, making patient comorbidities of significant concern. About 10 % of patients do not tolerate their initial BCR-ABL1 TKI and an increasing number are developing long-term side effects, particularly with the second generation drugs. Side effects of the five drugs reviewed here highlight the differences between cardiovascular, pulmonary, gastrointestinal, and endocrine toxicities, as well as possible second malignancies. There is increasing evidence that patients whose disease is controlled by TKI’s will have greater impact on their quality of life from comorbidities or drug adverse events than from the disease itself. Research into management of long-term toxicities is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gambacorti-Passerini C, Antolini L, Mahon FX, et al. Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. J Natl Cancer Inst. 2011;103:553–61.

    Article  CAS  PubMed  Google Scholar 

  2. The WJYJ, Capable ABL. What is its biological function? Mol Cell Biol. 2014;34:1188–97.

    Article  Google Scholar 

  3. Hantschel O. Structure, regulation, signaling, and targeting of Abl kinases in cancer. Genes Cancer. 2012;3:436–46.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bartram CR, de Klein A, Hagemeijer A, et al. Translocation of c-abl1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature. 1983;306:277–80.

    Article  CAS  PubMed  Google Scholar 

  5. Groffen J, Stephenson JR, Heisterkamp N, et al. Philadelphia chromosomal breakpoints are clustered within a limited region, BCR, on chromosome 22. Cell. 1984;36:93–9.

    Article  CAS  PubMed  Google Scholar 

  6. Deininger MW, Manley P. What do kinase inhibition profiles tell us about tyrosine kinase inhibitors used for the treatment of CML? Leuk Res. 2012;36:253–61.

    Article  CAS  PubMed  Google Scholar 

  7. Rea D. Management of adverse events associated with tyrosine kinase inhibitors in chronic myeloid leukemia. Ann Hematol. 2015;94 Suppl 2:S149–58. Most recent discussion of clinical management of TKI side effects.

    Article  PubMed  Google Scholar 

  8. Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up for patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.

    Article  CAS  PubMed  Google Scholar 

  9. Brummendorf TH, Cortes JE, de Souza AC, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia: results from the 24-month follow-up of the BELA trial. Br J Haematol. 2014;168:69–81. Randomized trial comparing the outcome and side effects of imatinib to bosutinib.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jabbour E, Kantarjian HM, Saglio G, et al. Early response with dasatinib or imatinib in chronic myeloid leukemia: 3-year follow-up from a randomized phase 3 trial (DASISION). Blood. 2014;123:494–500. Randomized trial comparing the outcome and side effects of imatinib to dasatinib.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Larson RA, Hochhaus A, Hughes TP, et al. Nilotinib vs. imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: ENESTnd 3-year follow-up. Leukemia. 2012;26:2197–203. Randomized trial comparing the outcome of imatinib to nilotinib.

    Article  CAS  PubMed  Google Scholar 

  12. Uitdehaag JC, de Roos JA, van Doornmalen AM, et al. Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use. PLoS ONE. 2014;9:e921–46.

    Article  Google Scholar 

  13. Cheng H, Force T. Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circ Res. 2010;106:21–34.

    Article  CAS  PubMed  Google Scholar 

  14. Hochhaus A, O’Brien SG, Guilhot F, et al. Six-year follow-up of patients receiving imatinib for the first line treatment of chronic myeloid leukemia. Leukemia. 2009;23:1054–61.

    Article  CAS  PubMed  Google Scholar 

  15. O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic phase chronic myeloid leukemia. N Engl J Med. 2003;348:994–1004.

    Article  PubMed  Google Scholar 

  16. Efficace F, Baccarani M, Breccia M, et al. Health-related quality of life in chronic myeloid leukemia patients receiving long-term therapy with imatinib compared with the general population. Blood. 2011;118:4554–60.

    Article  CAS  PubMed  Google Scholar 

  17. Kantarjian H, Shah NP, Hochhaus A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362:2260–70.

    Article  CAS  PubMed  Google Scholar 

  18. Hughes TP, Lipton JH, Spector N, et al. Deep molecular responses achieved in patients with CML-CP who are switched to nilotinib after long-term imatinib. Blood. 2014;124:729–36.

    Article  CAS  PubMed  Google Scholar 

  19. Kantarjian HM, Giles FJ, Bhalla KN, et al. Nilotinib is effective in patients with chronic myeloid leukemia in chronic phase after imatinib resistance or intolerance: 24-month follow up results. Blood. 2011;117:1141–5.

    Article  CAS  PubMed  Google Scholar 

  20. Cortes JE, Kim DW, Kantarjian HM, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol. 2012;30:3486–92.

    Article  CAS  PubMed  Google Scholar 

  21. Lipton JH, Chuah C, Guerci-Bresler A, et al. EPIC: A phase 3 trial of ponatinib compared with imatinib in patients with newly diagnosed chronic myeloid leukemia in chronic phase (CP-CML). Blood. Abstract 2014;124:519.

  22. Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–96. First report on the efficacy and side effects of ponatinib.

    Article  CAS  PubMed  Google Scholar 

  23. Shah NP, Guilhot F, Cortes JE, et al. Long-term outcome with dasatinib after imatinib failure in chronic-phase chronic myeloid leukemia: follow-up of a phase 3 study. Blood. 2014;123:2317–24.

    Article  CAS  PubMed  Google Scholar 

  24. Giles FJ, le Coutre PD, Pinilla-Ibarz J, et al. Nilotinib in imatinib-resistant or imatinib-intolerant patients with chronic myeloid leukemia in chronic phase: 48-month follow-up results of a phase II study. Leukemia. 2013;27:107–12.

    Article  CAS  PubMed  Google Scholar 

  25. Kantarjian HM, Cortes JE, Kim DW, et al. Bosutinib safety and management of toxicity in leukemia patients with resistance or intolerance to imatinib and other tyrosine kinase inhibitors. Blood. 2014;123:1309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783.

    Article  CAS  PubMed  Google Scholar 

  27. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7.

    Article  CAS  PubMed  Google Scholar 

  28. Kerkela R, Grazette L, Yacobi R, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature. 2006;12:908–16.

    Google Scholar 

  29. Atallah E, Durand JB, Kantarjian H, et al. Congestive heart failure is a rare event in patients receiving imatinib therapy. Blood. 2007; 110.

  30. Orphanos GS, Ioannidis GN, Ardavanis AG. Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol. 2009;48:964–70.

    Article  CAS  PubMed  Google Scholar 

  31. Groarke JD, Cheng S, Moslehi J. Cancer-drug discovery and cardiovascular surveillance. N Engl J Med. 2013;369:1779–81.

    Article  CAS  PubMed  Google Scholar 

  32. Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature. 2007;7:332–44.

    CAS  Google Scholar 

  33. Bronte G, Bronte E, Novo G, et al. Conquests and perspectives of cardio-oncology in the field of tumor angiogenesis-targeting tyrosine kinase inhibitor-based therapy. Expert Opin Drug Saf. 2015;14:253–67.

    Article  CAS  PubMed  Google Scholar 

  34. Kalmanti L, Saussele S, Lauseker M, et al. Safety and efficacy of imatinib in CML over a period of 10 years: data from the randomized CML-study IV. Leukemia. 2015;29:1123–32. Long-term study showing the side effects of imatinib and nilotinib.

    Article  CAS  PubMed  Google Scholar 

  35. Castagnetti F, Gugliotta G, Breccia M. Long-term outcome of chronic myeloid leukemia patients treated frontline with imatinib. Leukemia. 2015;29:1823–31.

    Article  CAS  PubMed  Google Scholar 

  36. Sprycel (dasatinib) [package insert]. Princeton, NJ: Bristol-Myers Squibb Company. 2006.

  37. Iclusig (ponatinib) [package insert]. Cambridge, MA: ARIAD Pharmaceuticals, Inc.;2012.

  38. Cortes JE, Saglio G, Baccarani M, et al. Final study results of the phase 3 dasatinib vs. imatinib in newly diagnosed chronic myeloid leukemia (CML-CP) trial (DASISION). Blood. Abstract. 2014;124(21):152. Long-term toxicities of imatinib and dasatinib show differences.

  39. Larson RA, Kim DW, Issaragrilsil S, et al. Efficacy and safety of nilotinib (NIL) vs imatinib (IM) in patients with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP): long-term follow-up of ENESTnd. Blood. Abstract. 2014;124:4541. Long-term side effects comparing imatinib and nilotinib show differences.

  40. Tasigna (nilotinib) [package insert]. East Hanover, NJ: Novartis Pharmaceuticals Corporation. 2007.

  41. Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354:2542–51.

    Article  PubMed  Google Scholar 

  42. Kantarjian HM, Giles F, Gattermann N, et al. Nilotinib, a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive CML-CP following imatinib resistance and intolerance. Blood. 2007;110(10):3540–6.

    Article  CAS  PubMed  Google Scholar 

  43. Dahlen T, Edgren G, Hoglund M, et al. Increased risk of cardiovascular events associated with TKI treatment in chronic phase chronic myeloid leukemia: data from Swedish population-based registries. Blood. Abstract 2014;124:3134

  44. Breccia M, Loglisci G, Salaroli A, et al. Nilotinib-mediated increase in fasting glucose level is reversible, does not convert to type 2 diabetes, and is likely correlated with increase body mass index. Leuk Res. 2012; e66-e67.

  45. Rea D, Mirault T, Cluzeau T, et al. Early onset hypercholesterolemia induced by the 2nd-generation tyrosine kinase inhibitor nilotinib in patients with chronic phase-chronic myeloid leukemia. Haematolgica. 2014;99:1197–203.

    Article  Google Scholar 

  46. Giles FJ, Mauro MJ, Hong F, et al. Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis. Leukemia. 2013;27:1310–15.

    Article  CAS  PubMed  Google Scholar 

  47. Aichberger KJ, Herndhofer S, Schernthaner GH, et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am J Hematol. 2011;86:533–9.

    Article  CAS  PubMed  Google Scholar 

  48. Le Coutre P, Rea D, Abruzzese E, et al. Severe peripheral arterial disease during nilotinib therapy. J Natl Cancer Inst. 2011;103:1347–8.

    Article  PubMed  Google Scholar 

  49. Quintas-Cardama A, Kantarjian H, Cortes J, et al. Nilotinib-associated vascular events. Clin Lymphoma Myeloma Leuk. 2012;12:337–40.

    Article  CAS  PubMed  Google Scholar 

  50. Levato L, Cantaffa R, Kroop MD, et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in chronic myeloid leukemia: a single institution study. Eur J Haematol. 2013;90:531–2.

    Article  CAS  PubMed  Google Scholar 

  51. Gugliotta G, Castagnetti F, Breccia M, et al. Long-term outcome of a phase 2 trial with nilotinib 400 mg twice daily in first-line treatment of chronic myeloid leukemia. Haematologica. 2015;100:1146–50.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kim TD, Rea D, Schwarz M, et al. Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia. 2013;27:1316–21.

    Article  CAS  PubMed  Google Scholar 

  53. Breccia M, Molica M, Zacheo I, et al. Application of systematic coronary risk evaluation chart to identify chronic myeloid leukemia patients at risk of cardiovascular diseases during nilotinib treatment. Ann Hematol. 2015;94:393–7.

    Article  CAS  PubMed  Google Scholar 

  54. Tefferi A. Nilotinib treatment-associated accelerated atherosclerosis: when is the risk justified? Leukemia. 2013;27:1939–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jain P, Kantarjian H, Jabbour E, et al. Ponatinib as first-line treatment for patients with chronic myeloid leukemia in chronic phase: a phase 2 study. Lancet. 2015;2:e376–83.

    Article  PubMed  Google Scholar 

  56. Hochhaus A. Optimizing tolerability of TKI therapy in CML. Blood. 2014;123:1284.

    Article  CAS  PubMed  Google Scholar 

  57. Valent P, Hadzijusufovic E, Schernthaner GH, et al. Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood. 2015;125:901–6. Review of cardiovascular toxicities of TKIs with discussion of how these toxicities were initially overlooked.

    Article  CAS  PubMed  Google Scholar 

  58. Moslehi JJ, Deininger M. Tyrosine Kinase Inhibitor-Associated Cardiovascular Toxicity in Chronic Myeloid Leukemia. J Clin Oncol. 2015;33. Important review of the published data on cardiovascular toxicities.

  59. Saussele S, Krauss MP, Hehlmann R, et al. Impact of comorbidities on overall survival in patients with chronic myeloid leukemia: results of the randomized CML Study IV. Blood. 2015;126:42–9. Co-morbidities in responsive patients appear to have major impact upon survival in CML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ohnishi K, Sakai F, Kudoh S, et al. Twenty-seven cases of drug-induced interstitial lung disease associated with imatinib mesylate. Leukemia. 2006;20:1162–4.

    Article  CAS  PubMed  Google Scholar 

  61. Peerzada MM, Spiro TP, Daw HA. Pulmonary toxicities of tyrosine kinase inhibitors. Clin Adv Hematol Oncol. 2011;9:824–36.

    PubMed  Google Scholar 

  62. Go SI, Lee WS, Kang JH, et al. Nilotinib-induced interstitial lung disease. Int J Hematol. 2013;98:361–5.

    Article  PubMed  Google Scholar 

  63. Shah NP, Wallis N, Farber HW, et al. Clinical features of pulmonary arterial hypertension in patients receiving dasatinib. Am J Hematol. 2015;90:1060–4.

    Article  CAS  PubMed  Google Scholar 

  64. Tatarczuch M, Burbury K, Creati L, et al. Dasatinib therapy can result in significant pulmonary toxicity. Am J Hematol. 2015; Accepted Article.

  65. Quintas-Cardama A, Kantarjian H, Ravendi F, et al. Bleeding diathesis in patients with chronic myelogenous leukemia receiving dasatinib therapy. Cancer. 2009;115:2482–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Quintas-Cardama A, Han X, Kantarjian H, et al. Tyrosine kinase inhibitor-induced platelet dysfunction in patients with chronic myeloid leukemia. Blood. 2009;114:261–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Patodi N, Sagar N, Rudzki Z, et al. Haematologic colitis caused By dasatinib. Case Rep Hematol. 2012;2012:ID 417106.

    Google Scholar 

  68. Apperley JF. Chronic myeloid leukaemia. Lancet. 2015;385:1447–59.

    Article  PubMed  Google Scholar 

  69. Shah RR, Morganroth J, Shah DR. Hepatotoxicity of tyrosine kinase inhibitors: clinical and regulatory perspectives. Drug Saf. 2013;36:491–503.

    Article  CAS  PubMed  Google Scholar 

  70. Bosulif (bosutinib) [package insert]. New York, NY: Pfizer Laboratories Div. Pfizer Inc.; 2012.

  71. Gleevec (imatinib mesylate) [package insert]. East Hanover, NJ: Novartis Pharmaceuticals Corporation; 2001.

  72. Marcolino MS, Boersma E, Clementino NCD, et al. Imatinib treatment duration is related to decreased estimated glomerular filtration rate in chronic myeloid leukemia patients. Ann Oncol. 2011;22:2073–9.

    Article  CAS  PubMed  Google Scholar 

  73. Yilmaz M, Lahoti A, O’Brien S, et al. Estimated glomerular filtration rate changes in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. Cancer. 2015;121:3894–904.

    Article  CAS  PubMed  Google Scholar 

  74. Salie R, Silver RT. Uncommon or delayed adverse events associated with imatinib treatment for chronic myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2010;10:331–5.

    Article  CAS  PubMed  Google Scholar 

  75. Berman E, Nicolaides M, Maki RG, et al. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med. 2006;354:2006–13.

    Article  CAS  PubMed  Google Scholar 

  76. Aleman JO, Farooki A. Girotra M Effects of tyrosine kinase inhibition on bone metabolism: untargeted consequences of targeted therapies. Endocr Relat Cancer. 2014;21:R247–59.

    Article  CAS  PubMed  Google Scholar 

  77. Farmer S, Horvath-Puho E, Vestergaard H, et al. Chronic myeloproliferative neoplasms and risk of osteoporotic fractures; a nationwide population-based cohort study. Brit J Haematol. 2013;163:603–10.

    Article  Google Scholar 

  78. Millot F, Guilhot J, Baruchel A, et al. Growth deceleration in children treated with imatinib for chronic myeloid leukemia. Eur J Cancer. 2014;50:3206–11.

    Article  CAS  PubMed  Google Scholar 

  79. Narayanan KR, Bansal D, Walia R, et al. Growth failure in children with chronic myeloid leukemia receiving imatinib is due to disruption of GH/IGF-1 axis. Pediatr Blood Cancer. 2013;60:1148–53.

    Article  CAS  PubMed  Google Scholar 

  80. Giona F, Mariani S, Gnessi L, et al. Bone mineral metabolism, growth rate and pubertal development in children with chronic myeloid leukemia treated with imatinib during puberty. Haematolgica. 2013;98:e25–7.

    Article  Google Scholar 

  81. Gambacorti-Passerini C, Tornaghi L, Cavagnini F, et al. Gynaecomastia in men with chronic myeloid leukemia after imatinib. Lancet. 2003;361:1954–6.

    Article  PubMed  Google Scholar 

  82. Pilot PR, Sablinska K, Owen S, et al. Epidemiologic analysis of second primary malignancies in more than 9,500 patients treated with imatinib. Leukemia. 2006;20:148.

    Article  CAS  PubMed  Google Scholar 

  83. Verma D, Kantarjian H, Strom S, et al. Malignancies occurring during therapy with tyrosine kinase inhibitors for chronic myeloid leukemia and other hematologic malignancies. Blood. 2011;118:4353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Togasaki-Yoshimoto E, Shono K, Onoda M, et al. The occurrence of second neoplasms after treatment with tyrosine kinase inhibitors for chronic myeloid leukemia. Leuk Lymphoma. 2014;55:453–6.

    Article  PubMed  Google Scholar 

  85. Gunnarsson N, Stenke L, Hoglund M, et al. Second malignancies following treatment of chronic myeloid leukaemia in the tyrosine kinase inhibitor era. Br J Haematol. 2015;169:683–8. Long-term concern is reopened regarding second malignancies from this retrospective population-based study.

    Article  CAS  PubMed  Google Scholar 

  86. Helbig G, Bober G, Seweryn M, et al. Occurrence of secondary malignancies in chronic myeloid leukemia during therapy with imatinib mesylate-single institution experience. Mediterr J Hematol Infect Dis. 2015;7:e2015003.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Duman BB, Paydas S, Disel U, et al. Secondary malignancy after imatinib therapy: eight cases and review of the literature. Leuk Lymphoma. 2012;53:1706–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Akard.

Ethics declarations

Conflict of Interest

Lauren Caldemeyer, Michael Dugan, and John Edwards report no potential conflicts of interest.

Luke Akard: Speakers Bureau: Ariad, BMS, Novartis, Teva. Research funding: Ariad, BMS, Novartis, Pfizer, Teva.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Chronic Myeloid Leukemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caldemeyer, L., Dugan, M., Edwards, J. et al. Long-Term Side Effects of Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia. Curr Hematol Malig Rep 11, 71–79 (2016). https://doi.org/10.1007/s11899-016-0309-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-016-0309-2

Keywords

Navigation