Skip to main content

Advertisement

Log in

Late Effects of Childhood Leukemia Therapy

  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

As survival rates for children treated for childhood cancers become significantly better, the focus is increasingly on determining the late effects of treatments and the best ways to monitor for them and prevent their occurrence. This review focuses on recent literature discussing the late effects of treatment in patients treated for acute myeloid leukemia and acute lymphoblastic leukemia during childhood. The late effects of therapy for childhood leukemia include secondary malignancy, cardiotoxicity, obesity, endocrine abnormalities, reproductive changes, neurocognitive deficits, and psychosocial effects. As clinicians have become more aware of the late effects of therapy, treatment regimens have been changed to decrease late effects, but patients still require long-term follow-up for their prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Leisenring WM, Mertens AC, Armstrong GT, et al. Pediatric cancer survivorship research: experience of the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27:2319–27.

    Article  PubMed  Google Scholar 

  2. Robison LL, Mertens AC, Boice JD, et al. Study design and cohort characteristics of the Childhood Cancer Survivor Study: a multi-institutional collaborative project. Med Pediatr Oncol. 2002;38:229–39.

    Article  PubMed  Google Scholar 

  3. Linabery AM, Ross JA. Childhood and adolescent cancer survival in the US by race and ethnicity for the diagnostic period 1975–1999. Cancer. 2008;113:2575–96.

    Article  PubMed  Google Scholar 

  4. Bhatia S, Sather HN, Pabustan OB, et al. Low incidence of second neoplasms among children diagnosed with acute lymphoblastic leukemia after 1983. Blood. 2002;99:4257–64.

    Article  PubMed  CAS  Google Scholar 

  5. Borgmann A, Zinn C, Hartmann R, et al. Secondary malignant neoplasms after intensive treatment of relapsed acute lymphoblastic leukaemia in childhood. Eur J Cancer. 2008;44:257–68.

    Article  PubMed  Google Scholar 

  6. Mody R, Li S, Dover DC, et al. Twenty-five-year follow-up among survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. Blood. 2008;111:5515–23.

    Article  PubMed  CAS  Google Scholar 

  7. Pui CH, Cheng C, Leung W, et al. Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N Engl J Med. 2003;349:640–9.

    Article  PubMed  Google Scholar 

  8. Hijiya N, Hudson MM, Lensing S, et al. Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. JAMA. 2007;297:1207–15.

    Article  PubMed  CAS  Google Scholar 

  9. • Meadows AT, Friedman DL, Neglia JP, et al. Second neoplasms in survivors of childhood cancer: findings from the Childhood Cancer Survivor Study cohort. J Clin Oncol. 2009; 27:2356–62. This report from the CCSS cohort reviews cumulative incidence of SN in ALL/AML survivors 20 and 25 years from therapy.

    Article  PubMed  Google Scholar 

  10. Gaynon PS, Angiolillo AL, Carroll WL, et al. Long-term results of the Children’s Cancer Group studies for childhood acute lymphoblastic leukemia 1983–2002: a Children’s Oncology Group Report. Leukemia. 2010;24:285–97.

    Article  PubMed  CAS  Google Scholar 

  11. Banerjee J, Paakko E, Harila M, et al. Radiation-induced meningiomas: a shadow in the success story of childhood leukemia. Neuro Oncol. 2009;11:543–9.

    Article  PubMed  Google Scholar 

  12. Bien E, Stachowicz-Stencel T, Szalewska M, et al. Poor-risk high-grade gliomas in three survivors of childhood acute lymphoblastic leukaemia–an overview of causative factors and possible therapeutic options. Childs Nerv Syst. 2009;25:619–26.

    Article  PubMed  Google Scholar 

  13. • Nathan PC, Wasilewski-Masker K, Janzen LA. Long-term outcomes in survivors of childhood acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009; 23:1065–82, vi-vii. This paper discusses ALL therapy that increases the incidence of SN. It reviews the cumulative incidence of SN 15 years after therapy, as well as risk factors for SN.

    Article  PubMed  Google Scholar 

  14. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371:1030–43.

    Article  PubMed  CAS  Google Scholar 

  15. Lipshultz SE, Colan SD, Gelber RD, et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991;324:808–15.

    Article  PubMed  CAS  Google Scholar 

  16. Nysom K, Holm K, Lipsitz SR, et al. Relationship between cumulative anthracycline dose and late cardiotoxicity in childhood acute lymphoblastic leukemia. J Clin Oncol. 1998;16:545–50.

    PubMed  CAS  Google Scholar 

  17. Lipshultz SE, Lipsitz SR, Sallan SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 2005;23:2629–36.

    Article  PubMed  CAS  Google Scholar 

  18. Creutzig U, Diekamp S, Zimmermann M, Reinhardt D. Longitudinal evaluation of early and late anthracycline cardiotoxicity in children with AML. Pediatr Blood Cancer. 2007;48:651–62.

    Article  PubMed  Google Scholar 

  19. Mertens AC, Liu Q, Neglia JP, et al. Cause-specific late mortality among 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. J Natl Cancer Inst. 2008;100:1368–79.

    Article  PubMed  Google Scholar 

  20. • Amigoni M, Giannattasio C, Fraschini D, et al. Low anthracyclines doses-induced cardiotoxicity in acute lymphoblastic leukemia long-term female survivors. Pediatr Blood Cancer. 2010; 55:1343–47. Children treated for ALL with a mean cumulative dose of 228 mg/m 2 of anthracyclines had reduced LV mass and wall thickness 12.6 years from treatment without clinical symptoms of heart failure.

    Article  PubMed  Google Scholar 

  21. Krischer JP, Epstein S, Cuthbertson DD, et al. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J Clin Oncol. 1997;15:1544–52.

    PubMed  CAS  Google Scholar 

  22. Kremer LC, van Dalen EC, Offringa M, Voute PA. Frequency and risk factors of anthracycline-induced clinical heart failure in children: a systematic review. Ann Oncol. 2002;13:503–12.

    Article  PubMed  CAS  Google Scholar 

  23. Kremer LC, van Dalen EC, Offringa M, et al. Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study. J Clin Oncol. 2001;19:191–6.

    PubMed  CAS  Google Scholar 

  24. Kremer LC, van der Pal HJ, Offringa M, et al. Frequency and risk factors of subclinical cardiotoxicity after anthracycline therapy in children: a systematic review. Ann Oncol. 2002;13:819–29.

    Article  PubMed  CAS  Google Scholar 

  25. Tukenova M, Guibout C, Oberlin O, et al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol. 2010;28:1308–15. This paper highlights the long-term risk of cardiac mortality in children treated with >360 mg/m2 of anthracyclines.

    Article  PubMed  Google Scholar 

  26. Sorensen K, Levitt GA, Bull C, et al. Late anthracycline cardiotoxicity after childhood cancer: a prospective longitudinal study. Cancer. 2003;97:1991–8.

    Article  PubMed  CAS  Google Scholar 

  27. Sorensen K, Levitt G, Bull C, et al. Anthracycline dose in childhood acute lymphoblastic leukemia: issues of early survival versus late cardiotoxicity. J Clin Oncol. 1997;15:61–8.

    PubMed  CAS  Google Scholar 

  28. •• Rathe M, Carlsen NL, Oxhoj H, Nielsen G. Long-term cardiac follow-up of children treated with anthracycline doses of 300 mg/m2 or less for acute lymphoblastic leukemia. Pediatr Blood Cancer. 2010; 54:444–8. This paper describes subclinical echocardiographic changes in a number of parameters in children with ALL treated with lower doses of anthracyclines.

    Article  PubMed  Google Scholar 

  29. Lipshultz SE, Rifai N, Dalton VM, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351:145–53.

    Article  PubMed  CAS  Google Scholar 

  30. Mertens AC, Yasui Y, Neglia JP, et al. Late mortality experience in five-year survivors of childhood and adolescent cancer: the Childhood Cancer Survivor Study. J Clin Oncol. 2001;19:3163–72.

    PubMed  CAS  Google Scholar 

  31. Lipshultz SE, Lipsitz SR, Mone SM, et al. Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med. 1995;332:1738–43.

    Article  PubMed  CAS  Google Scholar 

  32. •• Lipshultz SE, Scully RE, Lipsitz SR, et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol. 2010; 11:950–61. In this paper, the beneficial effect of dexrazoxane in children with ALL treated with doxorubicin was demonstrated on echocardiographic follow-up 5 years after treatment, with no change in EFS.

    Article  PubMed  CAS  Google Scholar 

  33. Tebbi CK, London WB, Friedman D, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol. 2007;25:493–500.

    Article  PubMed  CAS  Google Scholar 

  34. Barry EV, Vrooman LM, Dahlberg SE, et al. Absence of secondary malignant neoplasms in children with high-risk acute lymphoblastic leukemia treated with dexrazoxane. J Clin Oncol. 2008;26:1106–11.

    Article  PubMed  CAS  Google Scholar 

  35. Lipshultz SE, Giantris AL, Lipsitz SR, et al. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91–01 Acute Lymphoblastic Leukemia protocol. J Clin Oncol. 2002;20:1677–82.

    Article  PubMed  CAS  Google Scholar 

  36. Levitt GA, Dorup I, Sorensen K, Sullivan I. Does anthracycline administration by infusion in children affect late cardiotoxicity? Br J Haematol. 2004;124:463–8.

    Article  PubMed  CAS  Google Scholar 

  37. Steinherz PG, Redner A, Steinherz L, et al. Development of a new intensive therapy for acute lymphoblastic leukemia in children at increased risk of early relapse. The Memorial Sloan-Kettering-New York-II protocol. Cancer. 1993;72:3120–30.

    Article  PubMed  CAS  Google Scholar 

  38. Erkus B, Demirtas S, Yarpuzlu AA, et al. Early prediction of anthracycline induced cardiotoxicity. Acta Paediatr. 2007;96:506–9.

    Article  PubMed  Google Scholar 

  39. Hayakawa H, Komada Y, Hirayama M, et al. Plasma levels of natriuretic peptides in relation to doxorubicin-induced cardiotoxicity and cardiac function in children with cancer. Med Pediatr Oncol. 2001;37:4–9.

    Article  PubMed  CAS  Google Scholar 

  40. Bryant J, Picot J, Baxter L, et al. Use of cardiac markers to assess the toxic effects of anthracyclines given to children with cancer: a systematic review. Eur J Cancer. 2007;43:1959–66.

    Article  PubMed  CAS  Google Scholar 

  41. Rajic V, Aplenc R, Debeljak M, et al. Influence of the polymorphism in candidate genes on late cardiac damage in patients treated due to acute leukemia in childhood. Leuk Lymphoma. 2009;50:1693–8.

    Article  PubMed  CAS  Google Scholar 

  42. Blanco JG, Leisenring WM, Gonzalez-Covarrubias VM, et al. Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer. 2008;112:2789–95.

    Article  PubMed  Google Scholar 

  43. Cousens P, Waters B, Said J, Stevens M. Cognitive effects of cranial irradiation in leukaemia: a survey and meta-analysis. J Child Psychol Psychiatry. 1988;29:839–52.

    Article  PubMed  CAS  Google Scholar 

  44. • Harila MJ, Winqvist S, Lanning M, et al. Progressive neurocognitive impairment in young adult survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2009; 53:156–61. Patients treated with CRT or chemotherapy alone and healthy controls are compared 20 years after diagnosis. Differences were seen between all three groups in verbal and performance IQ, and between the CRT group and controls for memory, attention, and motor functions.

    Article  PubMed  Google Scholar 

  45. Peterson CC, Johnson CE, Ramirez LY, et al. A meta-analysis of the neuropsychological sequelae of chemotherapy-only treatment for pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer. 2008;51:99–104.

    Article  PubMed  Google Scholar 

  46. •• Goldsby RE, Liu Q, Nathan PC, et al. Late-occurring neurologic sequelae in adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2010; 28:324–31. This paper highlights the neurologic effects that are seen at a median follow-up of 14.1 years from diagnosis. Increased risk was seen for auditory-vestibular-sensory deficits, coordination and motor problems, headaches, and seizures, compared with siblings.

    Article  PubMed  Google Scholar 

  47. Bowers DC, Liu Y, Leisenring W, et al. Late-occurring stroke among long-term survivors of childhood leukemia and brain tumors: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2006;24:5277–82.

    Article  PubMed  Google Scholar 

  48. Campbell LK, Scaduto M, Sharp W, et al. A meta-analysis of the neurocognitive sequelae of treatment for childhood acute lymphocytic leukemia. Pediatr Blood Cancer. 2007;49:65–73.

    Article  PubMed  Google Scholar 

  49. Mitby PA, Robison LL, Whitton JA, et al. Utilization of special education services and educational attainment among long-term survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Cancer. 2003;97:1115–26.

    Article  PubMed  Google Scholar 

  50. Kingma A, Rammeloo LA, van Der Does-van den Berg A, et al. Academic career after treatment for acute lymphoblastic leukaemia. Arch Dis Child. 2000;82:353–7.

    Article  PubMed  CAS  Google Scholar 

  51. Harila-Saari AH, Lahteenmaki PM, Pukkala E, et al. Scholastic achievements of childhood leukemia patients: a nationwide, register-based study. J Clin Oncol. 2007;25:3518–24.

    Article  PubMed  Google Scholar 

  52. Pui CH, Howard SC. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol. 2008;9:257–68.

    Article  PubMed  Google Scholar 

  53. Kadan-Lottick NS, Zeltzer LK, Liu Q, et al. Neurocognitive functioning in adult survivors of childhood non-central nervous system cancers. J Natl Cancer Inst. 2010;102:881–93.

    Article  PubMed  Google Scholar 

  54. Silber JH, Radcliffe J, Peckham V, et al. Whole-brain irradiation and decline in intelligence: the influence of dose and age on IQ score. J Clin Oncol. 1992;10:1390–6.

    PubMed  CAS  Google Scholar 

  55. Rubenstein CL, Varni JW, Katz ER. Cognitive functioning in long-term survivors of childhood leukemia: a prospective analysis. J Dev Behav Pediatr. 1990;11:301–5.

    Article  PubMed  CAS  Google Scholar 

  56. Jankovic M, Brouwers P, Valsecchi MG, et al. Association of 1800 cGy cranial irradiation with intellectual function in children with acute lymphoblastic leukaemia. ISPACC. International Study Group on Psychosocial Aspects of Childhood Cancer. Lancet. 1994;344:224–7.

    Article  PubMed  CAS  Google Scholar 

  57. Waber DP, Tarbell NJ, Kahn CM, et al. The relationship of sex and treatment modality to neuropsychologic outcome in childhood acute lymphoblastic leukemia. J Clin Oncol. 1992;10:810–7.

    PubMed  CAS  Google Scholar 

  58. Bleyer WA, Fallavollita J, Robison L, et al. Influence of age, sex, and concurrent intrathecal methotrexate therapy on intellectual function after cranial irradiation during childhood: a report from the Children’s Cancer Study Group. Pediatr Hematol Oncol. 1990;7:329–38.

    Article  PubMed  CAS  Google Scholar 

  59. Waber DP, Gioia G, Paccia J, et al. Sex differences in cognitive processing in children treated with CNS prophylaxis for acute lymphoblastic leukemia. J Pediatr Psychol. 1990;15:105–22.

    Article  PubMed  CAS  Google Scholar 

  60. Jannoun L. Are cognitive and educational development affected by age at which prophylactic therapy is given in acute lymphoblastic leukaemia? Arch Dis Child. 1983;58:953–8.

    Article  PubMed  CAS  Google Scholar 

  61. Moore IM, Kramer JH, Wara W, et al. Cognitive function in children with leukemia. Effect of radiation dose and time since irradiation. Cancer. 1991;68:1913–7.

    Article  PubMed  CAS  Google Scholar 

  62. Moleski M. Neuropsychological, neuroanatomical, and neurophysiological consequences of CNS chemotherapy for acute lymphoblastic leukemia. Arch Clin Neuropsychol. 2000;15:603–30.

    PubMed  CAS  Google Scholar 

  63. Spiegler BJ, Kennedy K, Maze R, et al. Comparison of long-term neurocognitive outcomes in young children with acute lymphoblastic leukemia treated with cranial radiation or high-dose or very high-dose intravenous methotrexate. J Clin Oncol. 2006;24:3858–64.

    Article  PubMed  CAS  Google Scholar 

  64. Anderson VA, Godber T, Smibert E, et al. Cognitive and academic outcome following cranial irradiation and chemotherapy in children: a longitudinal study. Br J Cancer. 2000;82:255–62.

    Article  PubMed  CAS  Google Scholar 

  65. Langer T, Martus P, Ottensmeier H, et al. CNS late-effects after ALL therapy in childhood. Part III: neuropsychological performance in long-term survivors of childhood ALL: impairments of concentration, attention, and memory. Med Pediatr Oncol. 2002;38:320–8.

    Article  PubMed  Google Scholar 

  66. Butler RW, Hill JM, Steinherz PG, et al. Neuropsychologic effects of cranial irradiation, intrathecal methotrexate, and systemic methotrexate in childhood cancer. J Clin Oncol. 1994;12:2621–9.

    PubMed  CAS  Google Scholar 

  67. Anderson V, Smibert E, Ekert H, Godber T. Intellectual, educational, and behavioural sequelae after cranial irradiation and chemotherapy. Arch Dis Child. 1994;70:476–83.

    Article  PubMed  CAS  Google Scholar 

  68. Clarke M, Gaynon P, Hann I, et al. CNS-directed therapy for childhood acute lymphoblastic leukemia: Childhood ALL Collaborative Group overview of 43 randomized trials. J Clin Oncol. 2003;21:1798–809.

    Article  PubMed  CAS  Google Scholar 

  69. Pui CH, Campana D, Pei D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med. 2009;360:2730–41.

    Article  PubMed  CAS  Google Scholar 

  70. Cole PD, Kamen BA. Delayed neurotoxicity associated with therapy for children with acute lymphoblastic leukemia. Ment Retard Dev Disabil Res Rev. 2006;12:174–83.

    Article  PubMed  Google Scholar 

  71. Kingma A, Van Dommelen RI, Mooyaart EL, et al. No major cognitive impairment in young children with acute lymphoblastic leukemia using chemotherapy only: a prospective longitudinal study. J Pediatr Hematol Oncol. 2002;24:106–14.

    Article  PubMed  Google Scholar 

  72. Copeland DR, Moore 3rd BD, Francis DJ, et al. Neuropsychologic effects of chemotherapy on children with cancer: a longitudinal study. J Clin Oncol. 1996;14:2826–35.

    PubMed  CAS  Google Scholar 

  73. Raymond-Speden E, Tripp G, Lawrence B, Holdaway D. Intellectual, neuropsychological, and academic functioning in long-term survivors of leukemia. J Pediatr Psychol. 2000;25:59–68.

    Article  PubMed  CAS  Google Scholar 

  74. • Buizer AI, de Sonneville LM, Veerman AJ. Effects of chemotherapy on neurocognitive function in children with acute lymphoblastic leukemia: a critical review of the literature. Pediatr Blood Cancer. 2009; 52:447–54. A review of 21 studies found specific deficits in ALL survivors treated without CRT, including deficiencies in attention and executive function. Effects on IQ were not seen in the majority of studies.

    Article  PubMed  Google Scholar 

  75. Kaemingk KL, Carey ME, Moore IM, et al. Math weaknesses in survivors of acute lymphoblastic leukemia compared to healthy children. Child Neuropsychol. 2004;10:14–23.

    PubMed  Google Scholar 

  76. Carey ME, Haut MW, Reminger SL, et al. Reduced frontal white matter volume in long-term childhood leukemia survivors: a voxel-based morphometry study. AJNR Am J Neuroradiol. 2008;29:792–7.

    Article  PubMed  CAS  Google Scholar 

  77. Espy KA, Moore IM, Kaufmann PM, et al. Chemotherapeutic CNS prophylaxis and neuropsychologic change in children with acute lymphoblastic leukemia: a prospective study. J Pediatr Psychol. 2001;26:1–9.

    Article  PubMed  CAS  Google Scholar 

  78. Reddick WE, Shan ZY, Glass JO, et al. Smaller white-matter volumes are associated with larger deficits in attention and learning among long-term survivors of acute lymphoblastic leukemia. Cancer. 2006;106:941–9.

    Article  PubMed  Google Scholar 

  79. Buizer AI, de Sonneville LM, van den Heuvel-Eibrink MM, Veerman AJ. Chemotherapy and attentional dysfunction in survivors of childhood acute lymphoblastic leukemia: effect of treatment intensity. Pediatr Blood Cancer. 2005;45:281–90.

    Article  PubMed  Google Scholar 

  80. Hill DE, Ciesielski KT, Sethre-Hofstad L, et al. Visual and verbal short-term memory deficits in childhood leukemia survivors after intrathecal chemotherapy. J Pediatr Psychol. 1997;22:861–70.

    Article  PubMed  CAS  Google Scholar 

  81. Mulhern RK, Wasserman AL, Fairclough D, Ochs J. Memory function in disease-free survivors of childhood acute lymphocytic leukemia given CNS prophylaxis with or without 1,800 cGy cranial irradiation. J Clin Oncol. 1988;6:315–20.

    PubMed  CAS  Google Scholar 

  82. Buizer AI, De Sonneville LM, van den Heuvel-Eibrink MM, et al. Visuomotor control in survivors of childhood acute lymphoblastic leukemia treated with chemotherapy only. J Int Neuropsychol Soc. 2005;11:554–65.

    Article  PubMed  Google Scholar 

  83. Iuvone L, Mariotti P, Colosimo C, et al. Long-term cognitive outcome, brain computed tomography scan, and magnetic resonance imaging in children cured for acute lymphoblastic leukemia. Cancer. 2002;95:2562–70.

    Article  PubMed  Google Scholar 

  84. Waber DP, Carpentieri SC, Klar N, et al. Cognitive sequelae in children treated for acute lymphoblastic leukemia with dexamethasone or prednisone. J Pediatr Hematol Oncol. 2000;22:206–13.

    Article  PubMed  CAS  Google Scholar 

  85. Kadan-Lottick NS, Brouwers P, Breiger D, et al. A comparison of neurocognitive functioning in children previously randomized to dexamethasone or prednisone in the treatment of childhood acute lymphoblastic leukemia. Blood. 2009;114:1746–52.

    Article  PubMed  CAS  Google Scholar 

  86. von der Weid N, Mosimann I, Hirt A, et al. Intellectual outcome in children and adolescents with acute lymphoblastic leukaemia treated with chemotherapy alone: age- and sex-related differences. Eur J Cancer. 2003;39:359–65.

    Article  PubMed  Google Scholar 

  87. Brown RT, Madan-Swain A, Walco GA, et al. Cognitive and academic late effects among children previously treated for acute lymphocytic leukemia receiving chemotherapy as CNS prophylaxis. J Pediatr Psychol. 1998;23:333–40.

    Article  PubMed  CAS  Google Scholar 

  88. • Darzy KH, Shalet SM. Hypopituitarism following radiotherapy revisited. Endocr Dev. 2009; 15:1–24. This is a well-written review of potential hormonal defects in patients who undergo radiation therapy.

    Article  PubMed  Google Scholar 

  89. Duffner PK. Long-term effects of radiation therapy on cognitive and endocrine function in children with leukemia and brain tumors. Neurologist. 2004;10:293–310.

    Article  PubMed  Google Scholar 

  90. Linsenmeier C, Thoennessen D, Negretti L, et al. Total body irradiation (TBI) in pediatric patients. A single-center experience after 30 years of low-dose rate irradiation. Strahlenther Onkol. 2010;186:614–20.

    Article  PubMed  Google Scholar 

  91. Darzy KH. Radiation-induced hypopituitarism after cancer therapy: who, how and when to test. Nat Clin Pract Endocrinol Metab. 2009;5:88–99.

    Article  PubMed  CAS  Google Scholar 

  92. Haddy TB, Mosher RB, Nunez SB, Reaman GH. Growth hormone deficiency after chemotherapy for acute lymphoblastic leukemia in children who have not received cranial radiation. Pediatr Blood Cancer. 2006;46:258–61.

    Article  PubMed  Google Scholar 

  93. Viana MB, Vilela MI. Height deficit during and many years after treatment for acute lymphoblastic leukemia in children: a review. Pediatr Blood Cancer. 2008;50:509–16. discussion 517.

    Article  PubMed  Google Scholar 

  94. Vilela MI, Viana MB. Longitudinal growth and risk factors for growth deficiency in children treated for acute lymphoblastic leukemia. Pediatr Blood Cancer. 2007;48:86–92.

    Article  PubMed  Google Scholar 

  95. Alves CH, Kuperman H, Dichtchekenian V, et al. Growth and puberty after treatment for acute lymphoblastic leukemia. Rev Hosp Clin Fac Med Sao Paulo. 2004;59:67–70.

    Article  PubMed  Google Scholar 

  96. Nandagopal R, Laverdiere C, Mulrooney D, et al. Endocrine late effects of childhood cancer therapy: a report from the Children’s Oncology Group. Horm Res. 2008;69:65–74.

    Article  PubMed  CAS  Google Scholar 

  97. Gurney JG, Ness KK, Sibley SD, et al. Metabolic syndrome and growth hormone deficiency in adult survivors of childhood acute lymphoblastic leukemia. Cancer. 2006;107:1303–12.

    Article  PubMed  CAS  Google Scholar 

  98. Link K, Moell C, Garwicz S, et al. Growth hormone deficiency predicts cardiovascular risk in young adults treated for acute lymphoblastic leukemia in childhood. J Clin Endocrinol Metab. 2004;89:5003–12.

    Article  PubMed  CAS  Google Scholar 

  99. Follin C, Thilén U, Osterberg K, et al. Cardiovascular risk, cardiac function, physical activity, and quality of life with and without long-term growth hormone therapy in adult survivors of childhood acute lymphoblastic leukemia. J Clin Endocrinol Metab. 2010;95:3726–35.

    Article  PubMed  CAS  Google Scholar 

  100. Bell J, Parker KL, Swinford RD, et al. Long-term safety of recombinant human growth hormone in children. J Clin Endocrinol Metab. 2010;95:167–77.

    Article  PubMed  CAS  Google Scholar 

  101. Chow EJ, Friedman DL, Yasui Y, et al. Timing of menarche among survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer. 2008;50:854–8.

    Article  PubMed  Google Scholar 

  102. van Santen HM, Vulsma T, Dijkgraaf MG, et al. No damaging effect of chemotherapy in addition to radiotherapy on the thyroid axis in young adult survivors of childhood cancer. J Clin Endocrinol Metab. 2003;88:3657–63.

    Article  PubMed  CAS  Google Scholar 

  103. Delvecchio M, Cecinati V, Brescia LP, et al. Thyroid function and thyroid autoimmunity in childhood acute lymphoblastic leukemia off-therapy patients treated only with chemotherapy. J Endocrinol Invest. 2010;33:135–9.

    PubMed  CAS  Google Scholar 

  104. Bhatti P, Veiga LH, Ronckers CM, et al. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the childhood cancer survivor study. Radiat Res. 2010;174:741–52.

    Article  PubMed  CAS  Google Scholar 

  105. Einaudi S, Bertorello N, Masera N, et al. Adrenal axis function after high-dose steroid therapy for childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2008;50:537–41.

    Article  PubMed  Google Scholar 

  106. Kuperman H, Damiani D, Chrousos GP, et al. Evaluation of the hypothalamic-pituitary-adrenal axis in children with leukemia before and after 6 weeks of high-dose glucocorticoid therapy. J Clin Endocrinol Metab. 2001;86:2993–6.

    Article  PubMed  CAS  Google Scholar 

  107. Kaste SC, Rai SN, Fleming K, et al. Changes in bone mineral density in survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2006;46:77–87.

    Article  PubMed  Google Scholar 

  108. • Benmiloud S, Steffens M, Beauloye V, et al. Long-term effects on bone mineral density of different therapeutic schemes for acute lymphoblastic leukemia or non-Hodgkin lymphoma during childhood. Horm Res Paediatr. 2010; 74:241–50. This recent study investigated the effect of leukemia therapy on bone health. It included patients treated with chemotherapy alone, radiation and chemotherapy, and TBI for bone marrow transplantation.

    Article  PubMed  CAS  Google Scholar 

  109. Ross JA, Oeffinger KC, Davies SM, et al. Genetic variation in the leptin receptor gene and obesity in survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2004;22:3558–62.

    Article  PubMed  CAS  Google Scholar 

  110. Dalton VK, Rue M, Silverman LB, et al. Height and weight in children treated for acute lymphoblastic leukemia: relationship to CNS treatment. J Clin Oncol. 2003;21:2953–60.

    Article  PubMed  Google Scholar 

  111. Asner S, Ammann RA, Ozsahin H, et al. Obesity in long-term survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2008;51:118–22.

    Article  PubMed  CAS  Google Scholar 

  112. Gofman I, Ducore J. Risk factors for the development of obesity in children surviving ALL and NHL. J Pediatr Hematol Oncol. 2009;31:101–7.

    Article  PubMed  Google Scholar 

  113. Garmey EG, Liu Q, Sklar CA, et al. Longitudinal changes in obesity and body mass index among adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2008;26:4639–45.

    Article  PubMed  Google Scholar 

  114. Lowas S, Malempati S, Marks D. Body mass index predicts insulin resistance in survivors of pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer. 2009;53:58–63.

    Article  PubMed  Google Scholar 

  115. Marquis A, Kuehni CE, Strippoli MP, et al. Sperm analysis of patients after successful treatment of childhood acute lymphoblastic leukemia with chemotherapy. Pediatr Blood Cancer. 2010;55:208–10.

    PubMed  Google Scholar 

  116. Romerius P, Stahl O, Moell C, et al. Hypogonadism risk in men treated for childhood cancer. J Clin Endocrinol Metab. 2009;94:4180–6.

    Article  PubMed  CAS  Google Scholar 

  117. • van Casteren NJ, van der Linden GH, Hakvoort-Cammel FG, et al. Effect of childhood cancer treatment on fertility markers in adult male long-term survivors. Pediatr Blood Cancer. 2009; 52:108–12. This study correlates low inhibin B with low sperm concentration. Low inhibin levels were found in childhood cancer survivors.

    Article  PubMed  Google Scholar 

  118. • Green DM, Kawashima T, Stovall M, et al. Fertility of male survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2010; 28:332–9. This large study identified risk factors associated with cancer that place males at increased risk for infertility.

    Article  PubMed  Google Scholar 

  119. Byrne J, Fears TR, Mills JL, et al. Fertility of long-term male survivors of acute lymphoblastic leukemia diagnosed during childhood. Pediatr Blood Cancer. 2004;42:364–72.

    Article  PubMed  Google Scholar 

  120. Chemaitilly W, Mertens AC, Mitby P, et al. Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab. 2006;91:1723–8.

    Article  PubMed  CAS  Google Scholar 

  121. Sklar CA, Mertens AC, Mitby P, et al. Premature menopause in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst. 2006;98:890–6.

    Article  PubMed  Google Scholar 

  122. • Green DM, Kawashima T, Stovall M, et al. Fertility of female survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2009; 27:2677–85. This study identifies risk factors associated with cancer that place women at increased risk for reproductive complications, but it also provides reassurance that there was no increased risk for congenital malformation.

    Article  PubMed  CAS  Google Scholar 

  123. Byrne J, Fears TR, Mills JL, et al. Fertility in women treated with cranial radiotherapy for childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2004;42:589–97.

    Article  PubMed  Google Scholar 

  124. Mueller BA, Chow EJ, Kamineni A, et al. Pregnancy outcomes in female childhood and adolescent cancer survivors: a linked cancer-birth registry analysis. Arch Pediatr Adolesc Med. 2009;163:879–86.

    Article  PubMed  Google Scholar 

  125. Signorello LB, Cohen SS, Bosetti C, et al. Female survivors of childhood cancer: preterm birth and low birth weight among their children. J Natl Cancer Inst. 2006;98:1453–61.

    Article  PubMed  Google Scholar 

  126. Green DM, Whitton JA, Stovall M, et al. Pregnancy outcome of female survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Am J Obstet Gynecol. 2002;187:1070–80.

    Article  PubMed  Google Scholar 

  127. Eiser C. Beyond survival: quality of life and follow-up after childhood cancer. J Pediatr Psychol. 2007;32:1140–50.

    Article  PubMed  Google Scholar 

  128. Pang JW, Friedman DL, Whitton JA, et al. Employment status among adult survivors in the Childhood Cancer Survivor Study. Pediatr Blood Cancer. 2008;50:104–10.

    Article  PubMed  Google Scholar 

  129. Seitzman RL, Glover DA, Meadows AT, et al. Self-concept in adult survivors of childhood acute lymphoblastic leukemia: a cooperative Children’s Cancer Group and National Institutes of Health study. Pediatr Blood Cancer. 2004;42:230–40.

    Article  PubMed  Google Scholar 

  130. Pakakasama S, Veerakul G, Sosothikul D, et al. Late effects in survivors of childhood acute lymphoblastic leukemia: a study from Thai Pediatric Oncology Group. Int J Hematol. 2010;91:850–4.

    Article  PubMed  Google Scholar 

  131. • Harila MJ, Salo J, Lanning M, et al. High health-related quality of life among long-term survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2010; 55:331–6. This study found that survivors of ALL had a high HRQOL when compared with controls.

    Article  PubMed  Google Scholar 

  132. Recklitis CJ, Diller LR, Li X, et al. Suicide ideation in adult survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2010;28:655–61.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy M. Fulbright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulbright, J.M., Raman, S., McClellan, W.S. et al. Late Effects of Childhood Leukemia Therapy. Curr Hematol Malig Rep 6, 195–205 (2011). https://doi.org/10.1007/s11899-011-0094-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-011-0094-x

Keywords

Navigation