Skip to main content

Advertisement

Log in

Gene Therapy for Heart Failure: New Perspectives

  • Pathophysiology: Neuroendocrine, Vascular, and Metabolic Factors (S. Katz, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The current knowledge of pathophysiological and molecular mechanisms responsible for the genesis and development of heart failure (HF) is absolutely vast. Nonetheless, the hiatus between experimental findings and therapeutic options remains too deep, while the available pharmacological treatments are mostly seasoned and display limited efficacy. The necessity to identify new, non-pharmacological strategies to target molecular alterations led investigators, already many years ago, to propose gene therapy for HF. Here, we will review some of the strategies proposed over the past years to target major pathogenic mechanisms/factors responsible for severe cardiac injury developing into HF and will provide arguments in favor of the necessity to keep alive research on this topic.

Recent Findings

After decades of preclinical research and phases of enthusiasm and disappointment, clinical trials were finally launched in recent years. The first one to reach phase II and testing gene delivery of sarcoendoplasmic reticulum calcium ATPase did not yield encouraging results; however, other trials are ongoing, more efficient viral vectors are being developed, and promising new potential targets have been identified. For instance, recent research is focused on gene repair, in vivo, to treat heritable forms of HF, while strong experimental evidence indicates that specific microRNAs can be delivered to post-ischemic hearts to induce regeneration, a result that was previously thought possible only by using stem cell therapy.

Summary

Gene therapy for HF is aging, but exciting perspectives are still very open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of Amer. J Card Fail. 2017;23(8):628–51. https://doi.org/10.1016/j.cardfail.2017.04.014.

    Article  PubMed  Google Scholar 

  2. Nguyen E, Weeda ER, White CM. A review of new pharmacologic treatments for patients with chronic heart failure with reduced ejection fraction. J Clin Pharmacol. 2016;56(8):936–47. https://doi.org/10.1002/jcph.677.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson WF. Human gene therapy. Science. 1992;256(5058):808–13. https://doi.org/10.1126/science.256.5058.808.

    Article  CAS  PubMed  Google Scholar 

  4. Lin H, Parmacek MS, Morle G, Bolling S, Leiden JM. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation. 1990;82(6):2217–21. https://doi.org/10.1161/01.CIR.82.6.2217.

    Article  CAS  PubMed  Google Scholar 

  5. Zacchigna S, Giacca M. Extra- and intracellular factors regulating cardiomyocyte proliferation in postnatal life. Cardiovasc Res. 2014;102(2):312–20. https://doi.org/10.1093/cvr/cvu057.

    Article  CAS  PubMed  Google Scholar 

  6. Greenberg B. Gene therapy for heart failure. J Cardiol. 2015;66(3):195–200. https://doi.org/10.1016/j.jjcc.2015.02.006.

    Article  PubMed  Google Scholar 

  7. Hulot J-S, Ishikawa K, Hajjar RJ. Gene therapy for the treatment of heart failure: promise postponed. Eur Heart J. 2016;37(21):1651–8. https://doi.org/10.1093/eurheartj/ehw019.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rincon MY, VandenDriessche T, Chuah MK. Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovasc Res. 2015;108(1):4–20. https://doi.org/10.1093/cvr/cvv205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stammers AN, Susser SE, Hamm NC, Hlynsky MW, Kimber DE, Kehler DS, et al. The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA). Can J Physiol Pharmacol. 2015;93(10):843–54. https://doi.org/10.1139/cjpp-2014-0463.

    Article  CAS  PubMed  Google Scholar 

  10. Braz JC, Gregory K, Pathak A, Zhao W, Sahin B, Klevitsky R, et al. PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med. 2004;10(3):248–54. https://doi.org/10.1038/nm1000.

    Article  CAS  PubMed  Google Scholar 

  11. Kawase Y, Hajjar RJ. The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases. Nat Clin Pract Cardiovasc Med. 2008;5(9):554–65. https://doi.org/10.1038/ncpcardio1301.

    Article  CAS  PubMed  Google Scholar 

  12. Pathak A, del Monte F, Zhao W, Schultz JE, Lorenz JN, Bodi I, et al. Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ Res. 2005;96(7):756–66. https://doi.org/10.1161/01.RES.0000161256.85833.fa.

    Article  CAS  PubMed  Google Scholar 

  13. Watanabe S, Ishikawa K, Fish K, Oh JG, Motloch LJ, Kohlbrenner E, et al. Protein phosphatase Inhibitor-1 gene therapy in a swine model of nonischemic heart failure. J Am Coll Cardiol. 2017;70(14):1744–56. https://doi.org/10.1016/j.jacc.2017.08.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci U S A. 2000;97(2):793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. del Monte F, Harding SE, Schmidt U, et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation. 1999;100(23):2308–11.

    Article  PubMed Central  Google Scholar 

  16. Lyon AR, Bannister ML, Collins T, Pearce E, Sepehripour AH, Dubb SS, et al. SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circ Arrhythm Electrophysiol. 2011;4(3):362–72. https://doi.org/10.1161/CIRCEP.110.961615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kawase Y, Ly HQ, Prunier F, Lebeche D, Shi Y, Jin H, et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol. 2008;51(11):1112–9. https://doi.org/10.1016/j.jacc.2007.12.014.

    Article  CAS  PubMed  Google Scholar 

  18. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation. 2011;124(3):304–13. https://doi.org/10.1161/CIRCULATIONAHA.111.022889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greenberg B, Yaroshinsky A, Zsebo KM, et al. Design of a phase 2b trial of intracoronary administration of AAV1/SERCA2a in patients with advanced heart failure: the CUPID 2 trial (calcium up-regulation by percutaneous administration of gene therapy in cardiac disease phase 2b). JACC Heart Fail. 2014;2(1):84–92. https://doi.org/10.1016/j.jchf.2013.09.008.

    Article  PubMed  Google Scholar 

  20. Greenberg B, Butler J, Felker GM, Ponikowski P, Voors AA, Desai AS, et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet. 2016;387(10024):1178–86. https://doi.org/10.1016/S0140-6736(16)00082-9.

    Article  CAS  PubMed  Google Scholar 

  21. Yang L, Jiang J, Drouin LM, Agbandje-Mckenna M, Chen C, Qiao C, et al. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci U S A. 2009;106(10):3946–51. https://doi.org/10.1073/pnas.0813207106.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Asokan A, Conway JC, Phillips JL, Li C, Hegge J, Sinnott R, et al. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol. 2010;28(1):79–82. https://doi.org/10.1038/nbt.1599.

    Article  CAS  PubMed  Google Scholar 

  23. Nowak KJ, Davies KE. Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep. 2004;5(9):872–6. https://doi.org/10.1038/sj.embor.7400221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yiu EM, Kornberg AJ. Duchenne muscular dystrophy. J Paediatr Child Health. 2015;51(8):759–64. https://doi.org/10.1111/jpc.12868.

    Article  PubMed  Google Scholar 

  25. Manning J, O’Malley D. What has the mdx mouse model of Duchenne muscular dystrophy contributed to our understanding of this disease? J Muscle Res Cell Motil. 2015;36(2):155–67. https://doi.org/10.1007/s10974-015-9406-4.

    Article  CAS  PubMed  Google Scholar 

  26. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol. 2010;9(2):177–89. https://doi.org/10.1016/S1474-4422(09)70272-8.

    Article  CAS  PubMed  Google Scholar 

  27. Yue Y, Binalsheikh IM, Leach SB, Domeier TL, Duan D. Prospect of gene therapy for cardiomyopathy in hereditary muscular dystrophy. Expert Opin Orphan Drugs. 2016;4(2):169–83. https://doi.org/10.1517/21678707.2016.1124039.

    Article  CAS  PubMed  Google Scholar 

  28. Blankinship MJ, Gregorevic P, Chamberlain JS. Gene therapy strategies for Duchenne muscular dystrophy utilizing recombinant adeno-associated virus vectors. Mol Ther. 2006;13(2):241–9. https://doi.org/10.1016/j.ymthe.2005.11.001.

    Article  CAS  PubMed  Google Scholar 

  29. Abdul-Razak H, Malerba A, Dickson G. Advances in gene therapy for muscular dystrophies. F1000Res. 2016;5. https://doi.org/10.12688/f1000research.8735.1.

    Article  Google Scholar 

  30. Foster H, Popplewell L, Dickson G. Genetic therapeutic approaches for Duchenne muscular dystrophy. Hum Gene Ther. 2012;23(7):676–87. https://doi.org/10.1089/hum.2012.099.

    Article  CAS  PubMed  Google Scholar 

  31. Duan D. Duchenne muscular dystrophy gene therapy: lost in translation? Res Rep Biol. 2011;2011(2):31–42. https://doi.org/10.2147/RRB.S13463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Forbes SC, Bish LT, Ye F, Spinazzola J, Baligand C, Plant D, et al. Gene transfer of arginine kinase to skeletal muscle using adeno-associated virus. Gene Ther. 2014;21(4):387–92. https://doi.org/10.1038/gt.2014.9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bowles DE, McPhee SW, Li C, et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther. 2012;20(2):443–55. https://doi.org/10.1038/mt.2011.237.

    Article  CAS  PubMed  Google Scholar 

  34. Chamberlain JR, Chamberlain JS. Progress toward gene therapy for Duchenne muscular dystrophy. Mol Ther. 2017;25(5):1125–31. https://doi.org/10.1016/j.ymthe.2017.02.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Toromanoff A, Adjali O, Larcher T, Hill M, Guigand L, Chenuaud P, et al. Lack of immunotoxicity after regional intravenous (RI) delivery of rAAV to nonhuman primate skeletal muscle. Mol Ther. 2010;18(1):151–60. https://doi.org/10.1038/mt.2009.251.

    Article  CAS  PubMed  Google Scholar 

  36. Rodino-Klapac LR, Montgomery CL, Bremer WG, Shontz KM, Malik V, Davis N, et al. Persistent expression of FLAG-tagged micro dystrophin in nonhuman primates following intramuscular and vascular delivery. Mol Ther. 2010;18(1):109–17. https://doi.org/10.1038/mt.2009.254.

    Article  CAS  PubMed  Google Scholar 

  37. Kodippili K, Hakim CH, Pan X, Yang HT, Yue Y, Zhang Y, et al. Dual AAV gene therapy for Duchenne muscular dystrophy with a 7-kb mini-dystrophin gene in the canine model. Hum Gene Ther. 2018;29(3):299–311. https://doi.org/10.1089/hum.2017.095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duan D. Duchenne muscular dystrophy gene therapy in the canine model. Hum Gene Ther Clin Dev. 2015;26(1):57–69. https://doi.org/10.1089/humc.2015.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Z, Storb R, Halbert CL, Banks GB, Butts TM, Finn EE, et al. Successful regional delivery and long-term expression of a dystrophin gene in canine muscular dystrophy: a preclinical model for human therapies. Mol Ther. 2012;20(8):1501–7. https://doi.org/10.1038/mt.2012.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Systemic gene delivery clinical trial for Duchenne muscular dystrophy https://clinicaltrials.gov/ct2/show/NCT03375164?cond=%22Muscular+Dystrophy%2C+Duchenne%22&lupd_s=11%2F13%2F2015&lupd_d=1000.

  41. A study to evaluate the safety and tolerability of PF-06939926 gene therapy in Duchenne muscular dystrophy https://clinicaltrials.gov/ct2/show/NCT03362502?cond=%22Muscular+Dystrophy%2C+Duchenne%22&lupd_s=11%2F13%2F2015&lupd_d=1000.

  42. Gene transfer clinical trial to deliver rAAVrh74.MCK.GALGT2 for Duchenne muscular dystrophy https://clinicaltrials.gov/ct2/show/NCT03333590?cond=%22Muscular+Dystrophy%2C+Duchenne%22&lupd_s=11%2F13%2F2015&lupd_d=1000.

  43. Nance ME, Duan D. Perspective on adeno-associated virus capsid modification for Duchenne muscular dystrophy gene therapy. Hum Gene Ther. 2015;26(12):786–800. https://doi.org/10.1089/hum.2015.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghosh A, Duan D. Expanding adeno-associated viral vector capacity: a tale of two vectors. Biotechnol Genet Eng Rev. 2007;24:165–77.

    Article  CAS  PubMed  Google Scholar 

  45. Lai Y, Yue Y, Liu M, Ghosh A, Engelhardt JF, Chamberlain JS, et al. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol. 2005;23(11):1435–9. https://doi.org/10.1038/nbt1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koo T, Popplewell L, Athanasopoulos T, Dickson G. Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice. Hum Gene Ther. 2014;25(2):98–108. https://doi.org/10.1089/hum.2013.164.

    Article  CAS  PubMed  Google Scholar 

  47. Chapdelaine P, Pichavant C, Rousseau J, Paques F, Tremblay JP. Meganucleases can restore the reading frame of a mutated dystrophin. Gene Ther. 2010;17(7):846–58. https://doi.org/10.1038/gt.2010.26.

    Article  CAS  PubMed  Google Scholar 

  48. Ousterout DG, Perez-Pinera P, Thakore PI, Kabadi AM, Brown MT, Qin X, et al. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther. 2013;21(9):1718–26. https://doi.org/10.1038/mt.2013.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ousterout DG, Kabadi AM, Thakore PI, Perez-Pinera P, Brown MT, Majoros WH, et al. Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther. 2015;23(3):523–32. https://doi.org/10.1038/mt.2014.234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Popplewell L, Koo T, Leclerc X, Duclert A, Mamchaoui K, Gouble A, et al. Gene correction of a duchenne muscular dystrophy mutation by meganuclease-enhanced exon knock-in. Hum Gene Ther. 2013;24(7):692–701. https://doi.org/10.1089/hum.2013.081.

    Article  CAS  PubMed  Google Scholar 

  51. Cordova G, Negroni E, Cabello-Verrugio C, Mouly V, Trollet C. Combined therapies for Duchenne muscular dystrophy to optimize treatment efficacy. Front Genet. 2018;9:114. https://doi.org/10.3389/fgene.2018.00114.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Rivera RMC, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403–7. https://doi.org/10.1126/science.aad5143.

    Article  CAS  PubMed  Google Scholar 

  53. Wang J-Z, Wu P, Shi Z-M, Xu Y-L, Liu Z-J. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain and Development. 2017;39(7):547–56. https://doi.org/10.1016/j.braindev.2017.03.024.

    Article  PubMed  Google Scholar 

  54. Zhu P, Wu F, Mosenson J, Zhang H, He T-C, Wu W-S. CRISPR/Cas9-mediated genome editing corrects dystrophin mutation in skeletal muscle stem cells in a mouse model of muscle dystrophy. Mol Ther Nucleic Acids. 2017;7:31–41. https://doi.org/10.1016/j.omtn.2017.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mendell JR, Rodino-Klapac LR, Sahenk Z, et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol. 2013;74(5):637–47. https://doi.org/10.1002/ana.23982.

    Article  CAS  PubMed  Google Scholar 

  56. Nakamura A. Moving towards successful exon-skipping therapy for Duchenne muscular dystrophy. J Hum Genet. 2017;62(10):871–6. https://doi.org/10.1038/jhg.2017.57.

    Article  CAS  PubMed  Google Scholar 

  57. Kendall GC, Mokhonova EI, Moran M, Sejbuk NE, Wang DW, Silva O, et al. Dantrolene enhances antisense-mediated exon skipping in human and mouse models of Duchenne muscular dystrophy. Sci Transl Med. 2012;4(164):164ra160. https://doi.org/10.1126/scitranslmed.3005054.

    Article  CAS  PubMed  Google Scholar 

  58. McElhanon KE, Bhattacharya S. Altered membrane integrity in the progression of muscle diseases. Life Sci. 2018;192:166–72. https://doi.org/10.1016/j.lfs.2017.11.035.

    Article  CAS  PubMed  Google Scholar 

  59. Le Hir M, Goyenvalle A, Peccate C, et al. AAV genome loss from dystrophic mouse muscles during AAV-U7 snRNA-mediated exon-skipping therapy. Mol Ther. 2013;21(8):1551–8. https://doi.org/10.1038/mt.2013.121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stedman HH, Byrne BJ. Signs of progress in gene therapy for muscular dystrophy also warrant caution. Mol Ther. 2012;20(2):249–51. https://doi.org/10.1038/mt.2011.307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kornegay JN, Li J, Bogan JR, Bogan DJ, Chen C, Zheng H, et al. Widespread muscle expression of an AAV9 human mini-dystrophin vector after intravenous injection in neonatal dystrophin-deficient dogs. Mol Ther. 2010;18(8):1501–8. https://doi.org/10.1038/mt.2010.94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zaccolo M. cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br J Pharmacol. 2009;158(1):50–60. https://doi.org/10.1111/j.1476-5381.2009.00185.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lai NC, Roth DM, Gao MH, Tang T, Dalton N, Lai YY, et al. Intracoronary adenovirus encoding adenylyl cyclase VI increases left ventricular function in heart failure. Circulation. 2004;110(3):330–6. https://doi.org/10.1161/01.CIR.0000136033.21777.4D.

    Article  CAS  PubMed  Google Scholar 

  64. Roth DM, Bayat H, Drumm JD, Gao MH, Swaney JS, Ander A, et al. Adenylyl cyclase increases survival in cardiomyopathy. Circulation. 2002;105(16):1989–94.

    Article  CAS  PubMed  Google Scholar 

  65. Timofeyev V, He Y, Tuteja D, Zhang Q, Roth DM, Hammond HK, et al. Cardiac-directed expression of adenylyl cyclase reverses electrical remodeling in cardiomyopathy. J Mol Cell Cardiol. 2006;41(1):170–81. https://doi.org/10.1016/j.yjmcc.2006.04.008.

    Article  CAS  PubMed  Google Scholar 

  66. Hammond HK, Penny WF, Traverse JH, Henry TD, Watkins MW, Yancy CW, et al. Intracoronary gene transfer of adenylyl cyclase 6 in patients with heart failure: a randomized clinical trial. JAMA Cardiol. 2016;1(2):163–71. https://doi.org/10.1001/jamacardio.2016.0008.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Most P, Seifert H, Gao E, Funakoshi H, Völkers M, Heierhorst J, et al. Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction. Circulation. 2006;114(12):1258–68. https://doi.org/10.1161/CIRCULATIONAHA.106.622415.

    Article  CAS  PubMed  Google Scholar 

  68. Boerries M, Most P, Gledhill JR, Walker JE, Katus HA, Koch WJ, et al. Ca2+ -dependent interaction of S100A1 with F1-ATPase leads to an increased ATP content in cardiomyocytes. Mol Cell Biol. 2007;27(12):4365–73. https://doi.org/10.1128/MCB.02045-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pleger ST, Shan C, Ksienzyk J, Bekeredjian R, Boekstegers P, Hinkel R, et al. Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med. 2011;3(92):92ra64. https://doi.org/10.1126/scitranslmed.3002097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Weber C, Neacsu I, Krautz B, Schlegel P, Sauer S, Raake P, et al. Therapeutic safety of high myocardial expression levels of the molecular inotrope S100A1 in a preclinical heart failure model. Gene Ther. 2014;21(2):131–8. https://doi.org/10.1038/gt.2013.63.

    Article  CAS  PubMed  Google Scholar 

  71. uniQure N.V. Annual report 2017. http://www.uniqure.com/uniQure%20Annual%20Accounts%202017.pdf.

  72. Sen A, Ren S, Lerchenmuller C, et al. MicroRNA-138 regulates hypoxia-induced endothelial cell dysfunction by targeting S100A1. PLoS One. 2013;8(11):e78684. https://doi.org/10.1371/journal.pone.0078684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bry M, Kivelä R, Leppänen VM, Alitalo K. Vascular endothelial growth factor-B in physiology and disease. Physiol Rev. 2014;94:779–94.

    Article  CAS  PubMed  Google Scholar 

  74. Li Y, Zhang F, Nagai N, Tang Z, Zhang S, Scotney P, et al. VEGF-B inhibits apoptosis via VEGFR-1-mediated suppression of the expression of BH3-only protein genes in mice and rats. J Clin Invest. 2008;118:913–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 1996;335:1182–9.

    Article  CAS  PubMed  Google Scholar 

  76. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, et al. Apoptosis in the failing human heart. N Engl J Med. 1997;336:1131–41.

    Article  CAS  PubMed  Google Scholar 

  77. Saraste A, Pulkki K, Kallajoki M, et al. Cardiomyocyte apoptosis and progression of heart failure to transplantation. Eur J Clin Investig. 1999;29:380–6.

    Article  CAS  Google Scholar 

  78. Khatiwala JR, Everly MJ. An update on cardiac transplantation in the United States based on an analysis of the UNOS registry. Clin Transpl. 2015;31:27–34.

    PubMed  Google Scholar 

  79. Zentilin L, Puligadda U, Lionetti V, Zacchigna S, Collesi C, Pattarini L, et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. 2010;24:1467–78.

    Article  CAS  PubMed  Google Scholar 

  80. Pepe M, Mamdani M, Zentilin L, Csiszar A, Qanud K, Zacchigna S, et al. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ Res. 2010;106:1893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Woitek F, Zentilin L, Hoffman NE, Powers JC, Ottiger I, Parikh S, et al. Intracoronary cytoprotective gene therapy: a study of VEGF-B167 in a pre-clinical animal model of dilated cardiomyopathy. J Am Coll Cardiol. 2015;66:139–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362(9385):697–703. https://doi.org/10.1016/S0140-6736(03)14232-8.

    Article  CAS  PubMed  Google Scholar 

  83. Penn MS, Pastore J, Miller T, Aras R. SDF-1 in myocardial repair. Gene Ther. 2012;19(6):583–7. https://doi.org/10.1038/gt.2012.32.

    Article  CAS  PubMed  Google Scholar 

  84. Penn MS, Mendelsohn FO, Schaer GL, Sherman W, Farr M, Pastore J, et al. An open-label dose escalation study to evaluate the safety of administration of nonviral stromal cell-derived factor-1 plasmid to treat symptomatic ischemic heart failure. Circ Res. 2013;112(5):816–25. https://doi.org/10.1161/CIRCRESAHA.111.300440.

    Article  CAS  PubMed  Google Scholar 

  85. Chung ES, Miller L, Patel AN, Anderson RD, Mendelsohn FO, Traverse J, et al. Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized phase II trial. Eur Heart J. 2015;36(33):2228–38. https://doi.org/10.1093/eurheartj/ehv254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Durrani S, Konoplyannikov M, Ashraf M, Haider KH. Skeletal myoblasts for cardiac repair. Regen Med. 2010;5(6):919–32. https://doi.org/10.2217/rme.10.65.

    Article  PubMed  Google Scholar 

  87. Psaltis PJ, Schwarz N, Toledo-Flores D, Nicholls SJ. Cellular therapy for heart failure. Curr Cardiol Rev. 2016;12(3):195–215. https://doi.org/10.2174/1573403X12666160606121858.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ptaszek LM, Mansour M, Ruskin JN, Chien KR. Towards regenerative therapy for cardiac disease. Lancet. 2012;379(9819):933–42. https://doi.org/10.1016/S0140-6736(12)60075-0.

    Article  PubMed  Google Scholar 

  89. Zhang Y, Mignone J, MacLellan WR. Cardiac regeneration and stem cells. Physiol Rev. 2015;95(4):1189–204. https://doi.org/10.1152/physrev.00021.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Steinhoff G, Nesteruk J, Wolfien M, Große J, Ruch U, Vasudevan P, et al. Stem cells and heart disease—brake or accelerator? Adv Drug Deliv Rev. 2017;120:2–24. https://doi.org/10.1016/j.addr.2017.10.007.

    Article  CAS  PubMed  Google Scholar 

  91. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102. https://doi.org/10.1126/science.1164680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chaudhry HW, Dashoush NH, Tang H, Zhang L, Wang X, Wu EX, et al. Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem. 2004;279(34):35858–66. https://doi.org/10.1074/jbc.M404975200.

    Article  CAS  PubMed  Google Scholar 

  93. Woo YJ, Panlilio CM, Cheng RK, et al. Therapeutic delivery of cyclin A2 induces myocardial regeneration and enhances cardiac function in ischemic heart failure. Circulation. 2006;114(1 Suppl):I206–13. https://doi.org/10.1161/CIRCULATIONAHA.105.000455.

    Article  CAS  PubMed  Google Scholar 

  94. Liao HS, Kang PM, Nagashima H, Yamasaki N, Usheva A, Ding B, et al. Cardiac-specific overexpression of cyclin-dependent kinase 2 increases smaller mononuclear cardiomyocytes. Circ Res. 2001;88(4):443–50.

    Article  CAS  PubMed  Google Scholar 

  95. Pasumarthi KBS, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res. 2005;96(1):110–8. https://doi.org/10.1161/01.RES.0000152326.91223.4F.

    Article  CAS  PubMed  Google Scholar 

  96. Hassink RJ, Pasumarthi KB, Nakajima H, Rubart M, Soonpaa MH, de la Riviere AB, et al. Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc Res. 2008;78(1):18–25. https://doi.org/10.1093/cvr/cvm101.

    Article  CAS  PubMed  Google Scholar 

  97. Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature. 2013;497(7448):249–53. https://doi.org/10.1038/nature12054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xiang F-L, Guo M, Yutzey KE. Overexpression of Tbx20 in adult cardiomyocytes promotes proliferation and improves cardiac function after myocardial infarction. Circulation. 2016;133(11):1081–92. https://doi.org/10.1161/CIRCULATIONAHA.115.019357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Eulalio A, Mano M, Dal Ferro M, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):376–81. https://doi.org/10.1038/nature11739.

    Article  CAS  PubMed  Google Scholar 

  100. Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, et al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med. 2015;7(279):279ra38. https://doi.org/10.1126/scitranslmed.3010841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Meng Z, Moroishi T, Guan K-L. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30(1):1–17. https://doi.org/10.1101/gad.274027.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Halder G, Johnson RL. Hippo signaling: growth control and beyond. Development. 2011;138(1):9–22. https://doi.org/10.1242/dev.045500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Leach JP, Heallen T, Zhang M, Rahmani M, Morikawa Y, Hill MC, et al. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature. 2017;550(7675):260–4. https://doi.org/10.1038/nature24045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Morikawa Y, Zhang M, Heallen T, Leach J, Tao G, Xiao Y, et al. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice. Sci Signal. 2015;8(375):ra41. https://doi.org/10.1126/scisignal.2005781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tao G, Kahr PC, Morikawa Y, Zhang M, Rahmani M, Heallen TR, et al. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury. Nature. 2016;534(7605):119–23. https://doi.org/10.1038/nature17959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, et al. Hippo signaling impedes adult heart regeneration. Development. 2013;140(23):4683–90. https://doi.org/10.1242/dev.102798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen J, Huang Z-P, Seok HY, Ding J, Kataoka M, Zhang Z, et al. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res. 2013;112(12):1557–66. https://doi.org/10.1161/CIRCRESAHA.112.300658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang Y, Matsushita N, Eigler T, Marban E. Targeted microRNA interference promotes postnatal cardiac cell cycle re-entry. J Regen Med. 2013;2:2. https://doi.org/10.4172/2325-9620.1000108.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res. 2011;109(6):670–9. https://doi.org/10.1161/CIRCRESAHA.111.248880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Castellan RFP, Meloni M. Mechanisms and therapeutic targets of cardiac regeneration: closing the age gap. Front Cardiovasc Med. 2018;5:7. https://doi.org/10.3389/fcvm.2018.00007.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lin Z, Pu WT. Releasing YAP from an α-catenin trap increases cardiomyocyte proliferation. Circ Res. 2015;116(1):9–11. https://doi.org/10.1161/CIRCRESAHA.114.305496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huynh K. Basic research: inhibition of Hippo pathway signalling reverses systolic heart failure. Nat Rev Cardiol. 2017;14(12):697. https://doi.org/10.1038/nrcardio.2017.166.

    Article  PubMed  Google Scholar 

  113. Cahill TJ, Choudhury RP, Riley PR. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov. 2017;16(10):699–717. https://doi.org/10.1038/nrd.2017.106.

    Article  CAS  PubMed  Google Scholar 

  114. Hill MC, Martin JF. Heart muscle regeneration: the wonder of a cardio-cocktail. Cell Res. 2018;28(5):503–4. https://doi.org/10.1038/s41422-018-0035-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gabisonia K, Prosdocimo G, Aquaro GD, et al. Intramyocardial delivery of miR-199a reduces scar size and preserves contractile function in infarcted pig hearts. 2016 AHA late-breaking basic science abstracts. Circ Res. 2016;119:e160–71. https://doi.org/10.1161/RES.0000000000000126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio A. Recchia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pathophysiology: Neuroendocrine, Vascular, and Metabolic Factors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabisonia, K., Recchia, F.A. Gene Therapy for Heart Failure: New Perspectives. Curr Heart Fail Rep 15, 340–349 (2018). https://doi.org/10.1007/s11897-018-0410-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-018-0410-z

Keywords

Navigation