Skip to main content

Advertisement

Log in

Decompensated Heart Failure and Renal Failure: What Is the Current Evidence?

  • Decompensated Heart Failure (P Banerjee, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Acute decompensated heart failure (ADHF) is one of the biggest challenges in the management of chronic heart failure. Despite several advances in medical and device therapy, high readmission and mortality rates continue to be a burden on healthcare systems worldwide. The aim of the current review is to provide an overview on current as well as future approaches in cardiorenal interactions in patients with ADHF.

Recent Findings

One of the strongest predictors of adverse outcomes in ADHF is renal dysfunction, referred to as cardiorenal syndromes (CRS) or cardiorenal interactions. Patients with ADHF frequently develop worsening of renal function (WRF) and/or acute kidney injury (AKI). Recent studies brought new information about biomarkers in diagnosing and predicting prognosis of CRS. Among others, dry weight at hospital discharge is considered a surrogate marker of successful treatment in ADHF patients with/without renal dysfunction.

Summary

The etiology of WRF appears to be an important factor for determining risk related to WRF as well as clinical management. The hypertonic saline used as adjunctive therapy for intravenous loop diuretics and/or induction of aquaresis (e.g., using tolvaptan) may be promising and efficient approaches in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gheorghiade M, Vaduganathan M, Fonarow GC, Bonow RO. Rehospitalization for heart failure: problems and perspectives. J Am Coll Cardiol. 2013;61:391–403.

    Article  PubMed  Google Scholar 

  2. Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the medicare fee-for-service program. N Engl J Med. 2009;360:1418–28.

    Article  PubMed  CAS  Google Scholar 

  3. Fonarow GC, Adams KF Jr, Abraham WT, ADHERE Scientific Advisory Committee, Study Group, and Investigators, et al. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA. 2005;293:572–80.

    Article  PubMed  CAS  Google Scholar 

  4. Adams KF Jr, Fonarow GC, Emerman CL, LeJemtel TH, Costanzo MR, Abraham WT, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149:209–16.

    Article  PubMed  Google Scholar 

  5. • Schefold JC, Filippatos G, Hasenfuss G, Anker SD, von Haehling S. Heart failure and kidney dysfunction: epidemiology, mechanisms and management. Nat Rev Nephrol. 2016;12:610–23. This review describes important crosstalk between the heart and kidney, with a focus on HF and kidney disease in the acute and chronic settings.

    Article  PubMed  CAS  Google Scholar 

  6. McCullough PA: Cardiorenal syndromes: pathophysiology to prevention. Int J Nephrol 2011; 2011: 762590.

  7. Gottlieb SS, Abraham W, Butler J, Forman DE, Loh E, Massie BM, et al. The prognostic importance of different definitions of worsening renal function in congestive heart failure. J Card Fail. 2002;8:136–41.

    Article  PubMed  Google Scholar 

  8. Hoste EA, Cruz DN, Davenport A, Mehta RL, Piccinni P, Tetta C, et al. The epidemiology of cardiac surgery-associated acute kidney injury. Int J Artif Organs. 2008;31:158–65.

    Article  PubMed  CAS  Google Scholar 

  9. Roy AK, Mc Gorrian C, Treacy C, Kavanaugh E, Brennan A, Mahon NG, et al. A comparison of traditional and novel definitions (RIFLE, AKIN, and KDIGO) of acute kidney injury for the prediction of outcomes in acute decompensated heart failure. Cardiorenal Med. 2013;3:26–37.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kidney Disease. Improving global outcomes (KDIGO) acute kidney injury work group: KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012;2:1–138.

    Article  Google Scholar 

  11. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527–39.

    Article  PubMed  Google Scholar 

  13. Roy AK, Mc Gorrian C, Treacy C, Kavanaugh E, Brennan A, Mahon NG, et al. A comparison of traditional and novel definitions (RIFLE, AKIN, and KDIGO) of acute kidney injury for the prediction of outcomes in acute decompensated heart failure. Cardiorenal Med. 2013;3:26–37.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li Z, Cai L, Liang X, du Z, Chen Y, An S, et al. Identification and predicting short-term prognosis of early cardiorenal syndrome type 1: KDIGO is superior to RIFLE or AKIN. PLoS One. 2014;9:e114369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ronco C, Di Lullo L. Cardiorenal syndrome in western countries: epidemiology, diagnosis and management approaches. Kidney Dis (Basel). 2017;2(4):151–63.

    Article  Google Scholar 

  16. Havasi A, Borkan SC. Apoptosis and acute kidney injury. Kidney Int. 2011;80:29–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Prins KW, Thenappan T, Markowitz JS, Pritzker MR. Cardiorenal syndrome type 1: renal dysfunction in acute decompensated heart failure. J Clin Outcomes Manag. 2015;22(10):443–54.

    PubMed  PubMed Central  Google Scholar 

  18. Sarraf M, Masoumi A, Schrier RW. Cardiorenal syndrome in acute decompensated heart failure. Clin J Am Soc Nephrol. 2009;4(12):2013–26.

    Article  PubMed  CAS  Google Scholar 

  19. Aronson D. Cardiorenal syndrome in acute decompensated heart failure. Expert Rev Cardiovasc Ther. 2012;10(2):177–89.

    Article  PubMed  CAS  Google Scholar 

  20. Park CS, Park JJ, Oh IY, Yoon CH, Choi DJ, Park HA, et al. Relation of renal function with left ventricular systolic function and NT-proBNP level and its prognostic implication in heart failure with preserved versus reduced ejection fraction: an analysis from the Korean Heart Failure (KorHF) registry. Korean Circ J. 2017;47:727–41.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Löfman I, Szummer K, Hagerman I, Dahlström U, Lund LH, Jernberg T. Prevalence and prognostic impact of kidney disease on heart failure patients. Open Heart. 2016;3:e000324.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baydemir C, Ural D, Karaüzüm K, Balci S, Argan O, Karaüzüm I, et al. Predictors of long-term mortality and frequent re-hospitalization in patients with acute decompensated heart failure and kidney dysfunction treated with renin-angiotensin system blockers. Med Sci Monit. 2017;23:3335–44.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Qian JIA, Wang Y-R, Ping HE, Huang X-L, Yan W, Mu Y, et al. Prediction model of in-hospital mortality in elderly patients with acute heart failure based on retrospective study. J Geriatr Cardiol. 2017;14:669–78.

    Google Scholar 

  24. DeVore AD, Greiner MA, Sharma PP, Qualls LG, Schulte PJ, Cooper LB, et al. Development and validation of a risk model for in-hospital worsening heart failure from the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2016;178:198–205.

    Article  PubMed  Google Scholar 

  25. Bilchick KC, Chishinga N, Parker AM, Zhuo DX, Rosner MH, Smith LA, et al. Plasma volume and renal function predict six-month survival after hospitalization for acute decompensated heart failure. Cardiorenal Med. 2017;8(1):61–70.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Valente MA, Voors AA, Damman K, van Veldhuisen DJ, Massie BM, O’Connor CM, et al. Diuretic response in acute heart failure: clinical characteristics and prognostic significance. Eur Heart J. 2014;35:1284–93.

    Article  PubMed  CAS  Google Scholar 

  27. Iida N, Seo Y, Sai S, Machino-Ohtsuka T, Yamamoto M, Ishizu T, et al. Clinical implications of intrarenal hemodynamic evaluation by Doppler ultrasonography in heart failure. JACC Heart Fail. 2016;4(8):674–82.

    Article  PubMed  Google Scholar 

  28. Nijst P, Martens P, Dupont M, Tang WHW, Mullens W. Intrarenal flow alterations during transition from euvolemia to intravascular volume expansion in heart failure patients. JACC Heart Fail. 2017;5(9):672–81.

    Article  PubMed  Google Scholar 

  29. Núñez J, Miñana G, Santas E, Bertomeu-González V. Cardiorenal syndrome in acute heart failure: revisiting paradigms. Rev Esp Cardiol (Engl Ed). 2015;68:426–35.

    Article  Google Scholar 

  30. Voors AA, Davison BA, Teerlink JR, Felker GM, Cotter G, Filippatos G, et al. Diuretic response in patients with acute decompensated heart failure: characteristics and clinical outcome—an analysis from RELAX-AHF. Eur J Heart Fail. 2014;16:1230–40.

    Article  PubMed  CAS  Google Scholar 

  31. Testani JM, Chen J, McCauley BD, et al. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122:265–72.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Freda BJ, Knee AB, Braden GL, Visintainer PF, Thakar CV. Effect of transient and sustained acute kidney injury on readmissions in acute decompensated heart failure. Am J Cardiol. 2017;119(11):1809–14.

    Article  PubMed  Google Scholar 

  33. Ruocco G, Nuti R, Giambelluca A, Evangelista I, De Vivo O, Daniello C, et al. The paradox of transient worsening renal function in patients with acute heart failure: the role of B-type natriuretic peptide and diuretic response. J Cardiovasc Med (Hagerstown). 2017;18(11):851–8.

    Article  CAS  Google Scholar 

  34. Stolfo D, Stenner E, Merlo M, Porto AG, Moras C, Barbati G, et al. Prognostic impact of BNP variations in patients admitted for acute decompensated heart failure with in-hospital worsening renal function. Heart Lung Circ. 2017;26(3):226–34.

    Article  PubMed  CAS  Google Scholar 

  35. Ferreira JP, Chouihed T, Naseyrollas P, Levy B, Seronde MF, Bilbault P, et al. Practical management of concomitant acute heart failure and worsening renal function in the emergency department. Eur J Emerg Med. 2017 Oct 3:1. https://doi.org/10.1097/MEJ.0000000000000505.

  36. Salah K, Kok WE, Eurlings LW, Bettencourt P, Pimenta JM, Metra M, Verdiani V, Tijssen JG, Pinto YM. Competing risk of cardiac status and renal function during hospitalization for acute decompensated heart failure. JACC: HEART FAILURE 2015;3:751–61.

  37. Grande D, Gioia MI, Terlizzese P, Iacoviello M. Heart failure and kidney disease. Adv Exp Med Biol. 2017; https://doi.org/10.1007/5584_2017_126.

  38. Virzi GM, Clementi A, de Cal M, et al. Oxidative stress: dual pathway induction in cardiorenal syndrome type 1 pathogenesis. Oxidative Med Cell Longev. 2015:391790.

  39. Cho E, Kim M, Ko YS, Lee HY, Song M, Kim MG, et al. Role of inflammation in the pathogenesis of cardiorenal syndrome in a rat myocardial infarction model. Nephrol Dial Transplant. 2013;28:2766–78.

    Article  PubMed  CAS  Google Scholar 

  40. Devarajan P. Neutrophil gelatinase-associated lipocalin: a troponin-like biomarker for human acute kidney injury. Nephrology (Carlton). 2010;15:419–28.

    Article  Google Scholar 

  41. Ba Aqeel SH, Sanchez A, Batlle D. Angiotensinogen as a biomarker of acute kidney injury. Clin Kidney J. 2017;10(6):759–68.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yang CH, Chang CH, Chen TH, Fan PC, Chang SW, Chen CC, et al. Combination of urinary biomarkers improves early detection of acute kidney injury in patients with heart failure. Circ J. 2016;80(4):1017–23.

    Article  PubMed  CAS  Google Scholar 

  43. Hishikari K, Hikita H, Nakamura S, Nakagama S, Mizusawa M, Yamamoto T, et al. Urinary liver-type fatty acid-binding protein level as a predictive biomarker of acute kidney injury in patients with acute decompensated heart failure. Cardiorenal Med. 2017;7(4):267–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Shirakabe A, Hata N, Kobayashi N, Okazaki H, Matsushita M, Shibata Y, et al. Clinical usefulness of urinary liver fatty acid-binding protein excretion for predicting acute kidney injury during the first 7 days and the short-term prognosis in acute heart failure patients with non-chronic kidney disease. Cardiorenal Med. 2017;7(4):301–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Van Veldhuisen DJ, Ruilope LM, Maisel AS, Damman K. Biomarkers of renal injury and function: diagnostic, prognostic and therapeutic implications in heart failure. Eur Heart J. 2016;37:2577–85.

    Article  PubMed  CAS  Google Scholar 

  46. Dihazi H1, Koziolek MJ, Datta RR, Wallbach M, Jung K, Heise D, Dihazi GH, Markovic I, Asif AR, Müller GA. FABP1 and FABP3 have high predictive values for renal replacement therapy in patients with acute kidney injury. Blood Purif 2016;42(3):202–213.

  47. Alvelos M, Lourenco P, Dias C, Amorim M, Rema J, Leite AB, et al. Prognostic value of neutrophil gelatinase-associated lipocalin in acute heart failure. Int J Cardiol. 2013;165:51–5.

    Article  PubMed  Google Scholar 

  48. Maisel AS, Mueller C, Fitzgerald R, Brikhan R, Hiestand BC, Iqbal N, et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation along with B-type Natriuretic peptide in acutely decompensated heart failure. (GALLANT) trial. Eur J Heart Fail. 2011;13:846–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Mortara A, Bonadies M, Mazzetti S, Fracchioni I, Delfino P, Chioffi M, et al. Neutrophil gelatinase-associated lipocalin predicts worsening of renal function in acute heart failure: methodological and clinical issues. J Cardiovasc Med (Hagerstown). 2013;14:629–34.

    Article  CAS  Google Scholar 

  50. Angeletti S, Fogolari M, Morolla D, Capone F, Costantino S, Spoto S, De Cesaris M, Lo Presti A, Ciccozzi M, Dicuonzo G. Role of neutrophil gelatinase-associated lipocalin in the diagnosis and early treatment of acute kidney injury in a case series of patients with acute decompensated heart failure: a case series. Cardiol Res Pract 2016;2016:3708210. doi: https://doi.org/10.1155/2016/3708210.

  51. Damman K, Valente MAE, van Veldhuisen DJ, Cleland JGF, O’Connor CM, Metra PP, et al. Plasma neutrophil gelatinase-associated lipocalin and predicting clinically relevant worsening renal function in acute heart failure. Int J Mol Sci. 2017;18:1470. https://doi.org/10.3390/ijms18071470.

    Article  PubMed Central  Google Scholar 

  52. Maisel AS, Wettersten N, van Veldhuisen DJ, Mueller C, Filippatos G, Nowak R, et al. Neutrophil gelatinase-associated lipocalin for acute kidney injury during acute heart failure hospitalizations: the AKINESIS study. J Am Coll Cardiol. 2016;68:1420–31.

    Article  PubMed  CAS  Google Scholar 

  53. Nakada Y, Kawakami R, Matsui M, Ueda T, Nakano T, Takitsume A, Nakagawa H, Nishida T, Onoue K, Soeda T, Okayama S, Watanabe M, Kawata H, Okura H, Saito Y. Prognostic value of urinary neutrophil gelatinase-associated lipocalin on the first day of admission for adverse events in patients with acute decompensated heart failure. J Am Heart Assoc 2017;6(5). pii: e004582. doi: https://doi.org/10.1161/JAHA.116.004582.

  54. Chen C, Yang X, Lei Y, Zha Y, Liu H, Ma C, et al. Urinary biomarkers at the time of AKI diagnosis as predictors of progression of AKI among patients with acute cardiorenal syndrome. Clin J Am Soc Nephrol. 2016;11(9):1536–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Schmidt-Ott KM, Mori K, Li JY, Kalandadze A, Cohen DJ, Devarajan P, et al. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2007;18:407–13.

    Article  PubMed  CAS  Google Scholar 

  56. Shrestha K, Borowski AG, Troughton RW, Klein AL, Tang WH. Association between systemic neutrophil gelatinase-associated lipocalin and anemia, relative hypochromia, and inflammation in chronic systolic heart failure. Congest Heart Fail. 2012;18:239–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yang X, Chen C, Tian J, Zha Y, Xiong Y, Sun Z, et al. Urinary angiotensinogen level predicts AKI in acute decompensated heart failure: a prospective, two-stage study. J Am Soc Nephrol. 2015;26:2032–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chen C, Yang X, Lei Y, Zha Y, Liu H, Ma C, et al. Urinary biomarkers at the time of AKI diagnosis as predictors of progression of AKI among patients with acute cardiorenal syndrome. Clin J Am Soc Nephrol. 2016;11:1536–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Schefold JC, Zeden JP, Fotopoulou C, von Haehling S, Pschowski R, Hasper D, et al. Increased indoleamine 2,3-dioxygenase (IDO) activity and elevated serum levels of tryptophan catabolites in patients with chronic kidney disease: a possible link between chronic inflammation and uraemic symptoms. Nephrol Dial Transplant. 2009;24(6):1901–8.

    Article  PubMed  CAS  Google Scholar 

  60. Konishi M, Ebner N, Springer J, Schefold JC, Doehner W, Dschietzig TB, Anker SD, von Haehling S. Impact of plasma kynurenine level on functional capacity and outcome in heart failure—results from studies investigating co-morbidities aggravating heart failure (SICA-HF). Circ J 2016;81(1):52–61.

  61. Aregger F, Uehlinger DE, Fusch G, Bahonjic A, Pschowski R, Walter M, et al. Increased urinary excretion of kynurenic acid is associated with non-recovery from acute kidney injury in critically ill patients. BMC Nephrol. 2018;19(1):44.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nomoto H, Satoh Y, Kamiyama M, Yabe K, Masumura M, Sakakibara A, et al. Mechanisms of diuresis for acute decompensated heart failure by tolvaptan. Int Heart J. 2017;58(4):593–600.

    Article  PubMed  Google Scholar 

  63. Lafrenière G, Béliveau P, Bégin JY, Simonyan D, Côté S, Gaudreault V, et al. Effects of hypertonic saline solution on body weight and serum creatinine in patients with acute decompensated heart failure. World J Cardiol. 2017;9(8):685–92.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bart BA, Goldsmith SR, Lee KL, Givertz MM, O’Connor CM, Bull DA, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367:2296–304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. De Vecchis R, Ciccarelli A, Ariano C, Pucciarelli A, Cioppa C, Giasi A, et al. Renoprotective effect of small volumes of hypertonic saline solution in chronic heart failure patients with marked fluid retention: results of a case-control study. Herz. 2011;36:12–7.

    Article  PubMed  Google Scholar 

  66. Licata G, Di Pasquale P, Parrinello G, Cardinale A, Scandurra A, Follone G, et al. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: long-term effects. Am Heart J. 2003;145:459–66.

    Article  PubMed  CAS  Google Scholar 

  67. Paterna S, Fasullo S, Di Pasquale P. High-dose torasemide is equivalent to high-dose furosemide with hypertonic saline in the treatment of refractory congestive heart failure. Clin Drug Investig. 2005;25:165–73.

    Article  PubMed  CAS  Google Scholar 

  68. Paterna S, Di Pasquale P, Parrinello G, Fornaciari E, Di Gaudio F, Fasullo S, et al. Changes in brain natriuretic peptide levels and bioelectrical impedance measurements after treatment with high-dose furosemide and hypertonic saline solution versus high-dose furosemide alone in refractory congestive heart failure. a double-blind study J Am Coll Cardiol. 2005;45:1997–2003.

    Article  PubMed  CAS  Google Scholar 

  69. Parrinello G, Di Pasquale P, Torres D, Cardillo M, Schimmenti C, Lupo U, et al. Troponin I release after intravenous treatment with high furosemide doses plus hypertonic saline solution in decompensated heart failure trial (Tra-HSS-Fur). Am Heart J. 2012;164:351–7.

    Article  PubMed  CAS  Google Scholar 

  70. Paterna S, Fasullo S, Parrinello G, Cannizzaro S, Basile I, Vitrano G, et al. Short-term effects of hypertonic saline solution in acute heart failure and long-term effects of a moderate sodium restriction in patients with compensated heart failure with New York Heart Association class III (Class C) (SMAC-HF study). Am J Med Sci. 2011;342:27–37.

    Article  PubMed  Google Scholar 

  71. • De Vecchis R, Esposito C, Ariano C, Cantatrione S. Hypertonic saline plus i.v. furosemide improve renal safety profile and clinical outcomes in acute decompensated heart failure: a meta-analysis of the literature. Herz 2015;40(3):423–35. This is a recent article that based on five randomized controlled trials involving 1,032 patients treated with i.v. HSS plus furosemide versus 1,032 patients treated with i.v. furosemide alone showed that HSS as an adjunct to i.v. furosemide for diuretic-resistant CHF patients led to a better renal safety profile and improved clinical endpoints such as mortality and heart failure-related hospitalizations.

  72. Issa VS, Andrade L, Ayub-Ferreira SM, Bacal F, de Bragança AC, Guimarães GV, et al. Hypertonic saline solution for prevention of renal dysfunction in patients with decompensated heart failure. Int J Cardiol. 2013;167:34–40.

    Article  PubMed  Google Scholar 

  73. Catlin JR, Adams CB, Louie DJ, Wilson MD, Louie EN. Aggressive versus conservative initial diuretic dosing in the emergency department for acute decompensated heart failure. Ann Pharmacother. 2018;52(1):26–31.

    Article  PubMed  CAS  Google Scholar 

  74. Madeira M, Caetano F, Almeida I, Fernandes A, Reis L, Costa M, et al. Inotropes and cardiorenal syndrome in acute heart failure—a retrospective comparative analysis. Rev Port Cardiol. 2017;36(9):619–25.

    Article  PubMed  Google Scholar 

  75. King JB, Shah RU, Sainski-Nguyen A, Biskupiak J, Munger MA, Bress AP. Effect of inpatient dobutamine versus milrinone on out-of-hospital mortality in patients with acute decompensated heart failure. Pharmacotherapy. 2017;37(6):662–72.

    Article  PubMed  CAS  Google Scholar 

  76. Joannidis M, Druml W, Forni LG, Groeneveld ABJ, Honore PM, Hoste E, et al. Prevention of acute kidney injury and protection of renal function in the intensive care unit: update 2017: expert opinion of the working group on prevention, AKI section, European Society of Intensive Care Medicine. Intensive Care Med. 2017;43(6):730–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Siddiqui WJ, Kohut AR, Hasni SF, Goldman JM, Silverman B, Kelepouris E, et al. Readmission rate after ultrafiltration in acute decompensated heart failure: a systematic review and meta-analysis. Heart Fail Rev. 2017;22(6):685–98.

    Article  PubMed  Google Scholar 

  78. Kabach M, Alkhawam H, Shah S, Joseph G, Donath EM, Moss N, et al. Ultrafiltration versus intravenous loop diuretics in patients with acute decompensated heart failure: a meta-analysis of clinical trials. Acta Cardiol. 2017;72(2):132–41.

    Article  PubMed  Google Scholar 

  79. Kitai T, Grodin JL, Kim YH, Tang WH. Impact of ultrafiltration on serum sodium homeostasis and its clinical implication in patients with acute heart failure, congestion, and worsening renal function. Circ Heart Fail. 2017;10(2):e003603. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003603.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Correa A, Patel A, Chauhan K, Shah H, Saha A, Dave M, Poojary P, Mishra A, Annapureddy N, Dalal S, Konstantinidis I, Nimma R, Agarwal SK, Chan L, Nadkarni G, Pinney S. National trends and outcomes in dialysis-requiring acute kidney injury in heart failure: 2002–2013. J Card Fail 2018 May 3. pii: S1071-9164(18)30170-2. https://doi.org/10.1016/j.cardfail.2018.05.001. [Epub ahead of print].

  81. Kazory A. Peritoneal dialysis for chronic cardiorenal syndrome: lessons learned from ultrafiltration trials. World J Cardiol. 2015;7(7):392–6.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gheorghiade M, Gattis WA, O’Connor CM, et al. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA. 2004;291(16):1963–71.

    Article  PubMed  CAS  Google Scholar 

  83. Matsue Y, Suzuki M, Torii S, Yamaguchi S, Fukamizu S, Ono Y, et al. Clinical effectiveness of tolvaptan in patients with acute heart failure and renal dysfunction. J Card Fail. 2016;22(6):423–32.

    Article  PubMed  CAS  Google Scholar 

  84. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, AJS C, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200.

    Article  PubMed  Google Scholar 

  85. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary. J Am Coll Cardiol. 2013;62(16):1495–539.

    Article  Google Scholar 

  86. Konstam MA, Gheorghiade M, Burnett JC, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA. 2007;297(12):1319–31.

    Article  PubMed  CAS  Google Scholar 

  87. Gheorghiade M, Konstam MA, Burnett JC, et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST Clinical Status Trials. JAMA 2007 28;297(12):1332–1343.

  88. Pang PS, Konstam MA, Krasa HB, Swedberg K, Zannad F, Blair JE, et al. Effects of tolvaptan on dyspnoea relief from the EVEREST trials. Eur Heart J. 2009;30(18):2233–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ikeda S, Ohshima K, Miyazaki S, Kadota H, Shimizu H, Ogimoto A, et al. Impact of chronic kidney disease on the diuretic response of tolvaptan in acute decompensated heart failure: diuretic response of tolvaptan in ADHF. ESC Heart Fail. 2017;4(4):614–22.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kato M, Tohyama K, Ohya T, Hiro T, Hirayama A. Association between plasma concentration of tolvaptan and urine volume in acute decompensated heart failure patients with fluid overload. Cardiol J. 2016;23:497–504.

    PubMed  Google Scholar 

  91. Nakano Y, Mizuno T, Niwa T, Mukai K, Wakabayashi H, Watanabe A, et al. Impact of continuous administration of tolvaptan on preventing medium-term worsening renal function and long-term adverse events in heart failure patients with chronic kidney disease. Int Heart J [Internet]. 2018 [cited 2018 Jan 22]; Available from: https://www.jstage.jst.go.jp/article/ihj/advpub/0/advpub_16-625/_article.

  92. Kimura K, Momose T, Hasegawa T, Morita T, Misawa T, Motoki H, et al. Early administration of tolvaptan preserves renal function in elderly patients with acute decompensated heart failure. J Cardiol. 2016;67:399–405.

    Article  PubMed  Google Scholar 

  93. Tamaki S, Sato Y, Yamada T, Morita T, Furukawa Y, Iwasaki Y, et al. Tolvaptan reduces the risk of worsening renal function in patients with acute decompensated heart failure and preserved left ventricular ejection fraction—prospective randomized controlled study. Circ J. 2017;81(5):740–7.

    Article  PubMed  CAS  Google Scholar 

  94. Ellison DH, Felker GM. Diuretic treatment in heart failure. Ingelfinger JR, editor. N Engl J Med 2017;377:1964–1975.

  95. Nomoto H, Satoh Y, Kamiyama M, Yabe K, Masumura M, Sakakibara A, et al. Mechanisms of diuresis for acute decompensated heart failure by tolvaptan. Int Heart J. 2017;58:593–600.

    Article  PubMed  Google Scholar 

  96. Felker GM, Mentz RJ, Cole RT, Adams KF, Egnaczyk GF, Fiuzat M, et al. Efficacy and safety of tolvaptan in patients hospitalized with acute heart failure. J Am Coll Cardiol. 2017;69:1399–406.

    Article  PubMed  CAS  Google Scholar 

  97. Jujo K, Saito K, Ishida I, Furuki Y, Kim A, Suzuki Y, et al. Randomized pilot trial comparing tolvaptan with furosemide on renal and neurohumoral effects in acute heart failure: tolvaptan in acute heart failure patients. ESC Heart Fail. 2016;3:177–88.

    Article  PubMed  PubMed Central  Google Scholar 

  98. •• Wang C, Xiong B, Cai L. Effects of tolvaptan in patients with acute heart failure: a systematic review and meta-analysis. BMC CardiovascDisord [Internet]. 2017 Dec [cited 2018 Jan 22];17(1). Available from: https://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-017-0598-y This is the most recent meta-analysis assessing the role of tolvaptan in a total of 746 patients with acute heart failure. The study revealed that tolvaptan can decrease body weight, increase serum sodium level, and ameliorate some of the congestion symptoms in patients with acute heart failure, which may help avoid the overdose of loop diuretics, especially in patients with renal dysfunction.

  99. Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. RELAXin in acute heart failure (RELAX-AHF) investigators. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;81(9860):29–39.

    Article  CAS  Google Scholar 

  100. Liu LC, Voors AA, Teerlink JR, Cotter G, Davison BA, Felker GM, et al. Effects of serelaxin in acute heart failure patients with renal impairment: results from RELAX-AHF. Clin Res Cardiol. 2016;105(9):727–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Metra M1, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, Ponikowski P, Unemori E, Voors AA, Adams KF Jr, Dorobantu MI, Grinfeld L, Jondeau G, Marmor A, Masip J, Pang PS, Werdan K, Prescott MF, Edwards C, Teichman SL, Trapani A, Bush CA, Saini R, Schumacher C, Severin T, Teerlink JR; RELAX-AHF Investigators. Effect of serelaxin on cardiac, renal, and hepatic biomarkers in the Relaxin in Acute Heart Failure (RELAX-AHF) development program: correlation with outcomes. J Am Coll Cardiol 2013;61(2):196–206.

  102. Bhandari S, Ives N, Brettell EA, Valente M, Cockwell P, Topham PS, et al. Multicentre randomized controlled trial of angiotensin-converting enzyme inhibitor/angiotensin receptor blocker withdrawal in advanced renal disease: the STOP-ACEi trial. Nephrol Dial Transplant. 2016;31(2):255–61.

    PubMed  CAS  Google Scholar 

  103. Cohn JN1, Johnson G, Ziesche S, Cobb F, Francis G, Tristani F, Smith R, Dunkman WB, Loeb H, Wong M, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 1991;325(5):303–10.

  104. Pierpont GL, Cohn JN, Franciosa JA. Combined oral hydralazine-nitrate therapy in left ventricular failure. Hemodynamic equivalency to sodium nitroprusside Chest. 1978;73(1):8–13.

    PubMed  CAS  Google Scholar 

  105. Verbrugge FH, Dupont M, Finucan M, Gabi A, Hawwa N, Mullens W, et al. Response and tolerance to oral vasodilator up-titration after intravenous vasodilator therapy in advanced decompensated heart failure. Eur J Heart Fail. 2015;17:956–63.

    Article  PubMed  CAS  Google Scholar 

  106. Binkley PF, Starling RC, Hammer DF, Leier CV. Usefulness of hydralazine to withdraw from dobutamine in severe congestive heart failure. Am J Cardiol. 1991;68(10):1103–6.

    Article  PubMed  CAS  Google Scholar 

  107. Mullens W, Abrahams Z, Francis GS, Sokos G, Starling RC, Young JB, et al. Usefulness of isosorbide dinitrate and hydralazine as add-on therapy in patients discharged for advanced decompensated heart failure. Am J Cardiol. 2009;103(8):1113–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Cotter G, Metzkor E, Kaluski E, Faigenberg Z, Miller R, Simovitz A, et al. Randomised trial of high-dose isosorbide dinitrate plus low-dose furosemide versus high-dose furosemide plus low-dose isosorbide dinitrate in severe pulmonary oedema. Lancet. 1998;351:389–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan von Haehling.

Ethics declarations

Conflict of Interest

Agata Bielecka-Dabrowa, Breno Godoy, Joerg C. Schefold, Maciej Banach, and Stephan von Haehling each declare no potential conflicts of interest. Michael Koziolek reports a grant and personal fees from Novartis Pharma and personal fees from CVRx.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Decompensated Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bielecka-Dabrowa, A., Godoy, B., Schefold, J.C. et al. Decompensated Heart Failure and Renal Failure: What Is the Current Evidence?. Curr Heart Fail Rep 15, 224–238 (2018). https://doi.org/10.1007/s11897-018-0397-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-018-0397-5

Keywords

Navigation