Skip to main content

Advertisement

Log in

Diabetes-Related Dysfunction of the Small Intestine and the Colon: Focus on Motility

  • Microvascular Complications—Neuropathy (R Pop-Busui, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

In contrast to gastric dysfunction, diabetes-related functional impairments of the small and large intestine have been studied less intensively. The gastrointestinal tract accomplishes several functions, such as mixing and propulsion of luminal content, absorption and secretion of ions, water, and nutrients, defense against pathogens, and elimination of waste products. Diverse functions of the gut are regulated by complex interactions among its functional elements, including gut microbiota. The network-forming tissues, the enteric nervous system) and the interstitial cells of Cajal, are definitely impaired in diabetic patients, and their loss of function is closely related to the symptoms in diabetes, but changes of other elements could also play a role in the development of diabetes mellitus-related motility disorders. The development of our understanding over the recent years of the diabetes-induced dysfunctions in the small and large intestine are reviewed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Feldman M, Schiller LR. Disorders of gastrointestinal motility associated with diabetes mellitus. Ann Intern Med. 1983;98:378–84.

    Article  CAS  PubMed  Google Scholar 

  2. Schvarcz E, Palmér M, Ingberg CM, et al. Increased prevalence of upper gastrointestinal symptoms in long-term type 1 diabetes mellitus. Diabet Med. 1996;13:478–81.

    Article  CAS  PubMed  Google Scholar 

  3. von der Ohe MR. Diarrhea in patients with diabetes mellitus. Eur J Gastroenterol Hepatol. 1995;7:730–6.

    PubMed  Google Scholar 

  4. Janatuinen E, Pikkarainen P, Laakso M, et al. Gastrointestinal symptoms in middleaged diabetic patients. Scand J Gastroenterol. 1993;28:427–32.

    Article  CAS  PubMed  Google Scholar 

  5. Bytzer P, Talley NJ, Hammer J, et al. GI symptoms in diabetes mellitus are associated with both poor glycemic control and diabetic complications. Am J Gastroenterol. 2002;97:604–11.

    Article  PubMed  Google Scholar 

  6. Talley NJ, Phillips SF, Melton LJI, et al. A patient questionnaire to identify bowel disease. Ann Intern Med. 1989;111:671–4.

    Article  CAS  PubMed  Google Scholar 

  7. Maxton DG, Whorwell PJ. Functional bowel symptoms in diabetes—the role of autonomic neuropathy. Postgrad Med J. 1991;67:991–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wald A. Incontinence and anorectal dysfunction in patients with diabetes mellitus. Eur J Gastroenterol Hepatol. 1995;7:737–9.

    CAS  PubMed  Google Scholar 

  9. Quan C, Talley NJ, Cross S, et al. Development and validation of the diabetes bowel symptom questionnaire. Aliment Pharmacol Ther. 2003;17:1179–87.

    Article  CAS  PubMed  Google Scholar 

  10. Lelic D, Brock C, Simrém M, et al. The brain networks encoding visceral sensation in patients with gastrointestinal symptoms due to diabetic neuropathy. Neurogastroenterol Motil. 2014;26:46–58.

    Article  CAS  PubMed  Google Scholar 

  11. Lelic D, Brock C, Søfteland E, et al. Brain networks encoding rectal sensation in type 1 diabetes. Neuroscience. 2013;1:96–105.

    Article  Google Scholar 

  12. Brock C, Søfteland E, Gunterberg V, et al. Diabetic autonomic neuropathy affects symptom generation and brain-gut axis. Diabetes Care. 2013;36:3698–705.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Blair PJ, Rhee P-L, Sanders KM, et al. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil. 2014;20:294–317. This is an excellent report about the contribution of ICC to the gastrointestinal motility.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ördög T. Interstitial cells of Cajal in diabetic gastroenteropathy. Neurogastroenterol Motil. 2008;20:8–18.

    Article  PubMed  Google Scholar 

  15. Huizinga JD, Chen J-H, Zhu YF. The origin of segmentation motor activity in the intestine. Nat Commun. 2014;5:1–11.

    Article  Google Scholar 

  16. Huizinga JD, Martz S, Gil V, et al. Two independent networks of interstitial cells of Cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front Neurosci. 2011;5:1–14.

    Article  Google Scholar 

  17. Sjölund K, Sandén G, Håkanson R, et al. Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology. 1983;85:1120–30.

    PubMed  Google Scholar 

  18. Greenberg GR, Pokol-Daniel S. Neural modulation of glucose-dependent insulinotropic peptide (GIP) and insulin secretion in conscious dogs. Pancreas. 1994;9:531–5.

    Article  CAS  PubMed  Google Scholar 

  19. Pappachan JM, Raveendran AV, Sriraman R. Incretin manipulation in diabetes management. World J Diabetes. 2015;6:774–81.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Holst JJ, Burcelin R, Nathanson E. Neuroprotective properties of GLP-1: theoretical and practical applications. Curr Med Res Opin. 2011;27:547–58.

    Article  CAS  PubMed  Google Scholar 

  21. Kazakos KA, Sarafidis PA, Yovos JG. The impact of diabetic autonomic neuropathy on the incretin effect. Med Sci Monit. 2008;14:CR213–20.

    CAS  PubMed  Google Scholar 

  22. Forrest A, Huizinga JD, Wang XY, et al. Increase in stretch-induced rhythmic motor activity in the diabetic rat colon is associated with loss of ICC of the submuscular plexus. Am J Physiol Gastrointest Liver Physiol. 2008;294:G315–26.

    Article  CAS  PubMed  Google Scholar 

  23. Imaeda K, Takano H, Koshita M, et al. Electrical properties of colonic smooth muscle in spontaneously non-insulin-dependent diabetic rats. J Smooth Muscle Res. 1998;34:1–11.

    Article  CAS  PubMed  Google Scholar 

  24. Huizinga JD, Zarate N, Farrugia G. Physiology, injury and recovery of interstitial cells of Cajal: basic and clinical science. Gastroenterology. 2009;137:1548–56.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Sanders KM, Ördög T, Koh SD, et al. Physiology and pathophysiology of the interstitial cells of Cajal: from bench to bedside. IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol. 2002;282:G747–56.

    Article  CAS  PubMed  Google Scholar 

  26. Yamamoto T, Watabe K, Nakahara M, et al. Involvement of interstitial cells of Cajal in gastrointestinal dysmotility of diabetic db/db mice. Gastroenterology. 2006;130:A-90.

    Google Scholar 

  27. Wim JEP, Lammers HM, Al-Bloushi SA, et al. Slow wave propagation and plasticity of interstitial cells of Cajal in the small intestine of diabetic rats. Exp Physiol. 2011;96:1039–48.

    Article  Google Scholar 

  28. Kawano K, Hirashima T, Mori S, et al. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes. 1992;41:1422–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kim SJ, Park JH, Song DK, et al. Alterations of colonic contractility in long-term diabetic rat model. J Neurogastroenterol Motil. 2011;17:372–80.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lorincz A, Redelman D, Horvath VJ, et al. Progenitors of interstitial cells of Cajal in the postnatal murine stomach. Gastroenterology. 2008;134:1083–93.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Bardsley MR, Horvath VJ, Asuzu DT, et al. Kitlow stem cells cause resistance to Kit/platelet-derived growth factor alpha inhibitors in murine gastrointestinal stromal tumors. Gastroenterology. 2010;139:942–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Maneesh D, Hayashi Y, Gajdos GB, et al. Stem cells for murine interstitial cells of Cajal suppress cellular immunity and colitis via prostaglandin E2 secretion. Gastroenterology. 2015;148:978–90.

    Article  Google Scholar 

  33. He CL, Soffer EE, Ferris CD, et al. Loss of interstitial cells of Cajal and inhibitory innervation in insulin-dependent diabetes. Gastroenterology. 2001;121:427–34.

    Article  CAS  PubMed  Google Scholar 

  34. Nakahara M, Isozaki K, Hirota S, et al. Deficiency of KIT positive cells in the colon of patients with diabetes mellitus. J Gastroenterol Hepatol. 2002;17:666–70.

    Article  PubMed  Google Scholar 

  35. Nielsen DS, Krich L, Buschard K, et al. Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes. FEBS Lett. 2014;588:4234–43.

    Article  CAS  PubMed  Google Scholar 

  36. Vaarala O. Human intestinal microbiota and type 1 diabetes. Curr Diab Rep. 2013;13:601–7.

    Article  CAS  PubMed  Google Scholar 

  37. Atkinson MA, Bluestone JA, Eisenbarth GS, et al. How does type 1 diabetes develop? The notion of homicide or β-cell suicide revisited. Diabetes. 2011;60:1370–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Wheway J, Mackay CR, Newton RA, et al. A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J Exp Med. 2005;202:1527–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Gutierrez-Canas I, Juarraz Y, Santiago B, et al. VIP down-regulates TLR4 expression and TLR4-mediated chemokine production in human rheumatoid synovial fibroblasts. Rheumatology. 2006;45:527–32.

    Article  CAS  PubMed  Google Scholar 

  40. Barbara G, Stanghellini V, Brandi G, et al. Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am J Gastroenterol. 2005;100:2560–8.

    Article  CAS  PubMed  Google Scholar 

  41. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6:306–14.

    Article  CAS  PubMed  Google Scholar 

  42. Bagyánszki M, Bodi N. Diabetes-related alterations in the enteric nervous system and its microenvironment. World J Diabetes. 2012;3:80–93.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Bravo JA, Forsythe P, Chew MV. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108:16050–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kunze WA, Mao YK, Wang B. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med. 2009;13:2261–70.

    Article  PubMed  Google Scholar 

  45. Iyer LM, Aravind L, Coon SL, et al. Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet. 2004;20:292–9.

    Article  CAS  PubMed  Google Scholar 

  46. Asano Y, Hiramoto T, Nishino R. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol. 2012;303:G1288–95.

    Article  CAS  PubMed  Google Scholar 

  47. Sobko T, Huang L, Midtvedt T. Generation of NO by probiotic bacteria in the gastrointestinal Tract. Free Radic Biol Med. 2006;41:985–91.

    Article  CAS  PubMed  Google Scholar 

  48. Schicho R, Krueger D, Zeller F. Hydrogen sulfide is a novel prosecretory neuromodulator in the Guinea-pig and human colon. Gastroenterology. 2006;131:1542–52.

    Article  CAS  PubMed  Google Scholar 

  49. Wirth R, Bódi N, Maróti G, et al. Regionally distinct alterations in the composition of the gut microbiota in rats with streptozotocin-induced diabetes. PLoS One. 2014;9, e110440.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Izbéki F, Wittman T, Rosztóczy A, et al. Immediate insulin treatment prevents gut motility alterations and loss of nitrergic neurons in the ileum and colon of rats with streptozotocin-induced diabetes. Diabetes Res Clin Pract. 2008;80:192–8.

    Article  PubMed  Google Scholar 

  51. Bódi N, Talapka P, Poles P, et al. Gut region-specific diabetic damage to the capillary endothelium adjacent to the myenteric plexus. Microcirculation. 2012;19:316–26.

    Article  PubMed  Google Scholar 

  52. Vaarala O, Atkinson MA, Neu J. The “perfect storm” for type 1 diabetes. The complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes. 2008;57:2555–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Yarandi SS, Srinivasan S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil. 2014;26:611–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Lundgren O, Svanvik J, Jivegard L. Enteric nervous system. I. Physiology and pathophysiology of the intestinal tract. Dig Dis Sci. 1989;34:264–83.

    Article  CAS  PubMed  Google Scholar 

  55. Furness JB, Callaghan BP, Rivera LR, et al. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 2014;817:39–71.

    Article  PubMed  Google Scholar 

  56. Kempler P, Amarenco G, Freeman R, et al. Toronto Consensus Panel on Diabetic Neuropathy. Management strategies for gastrointestinal, erectile, bladder, and sudomotor dysfunction in patients with diabetes. Diabetes Metab Res Rev. 2011;27:665–77. The latest panel guideline on autonomic neuropathy and gastrointestinal complications.

    Article  CAS  PubMed  Google Scholar 

  57. Søfteland E, Brock C, Frøkjær JB, et al. Association between visceral, cardiac and sensorimotor polyneuropathies in diabetes mellitus. J Diabetes Complicat. 2014;28:370–7.

    Article  PubMed  Google Scholar 

  58. Cesario V, Di Rienzo TA, Campanale M, et al. Methane intestinal production and poor metabolic control in type I diabetes complicated by autonomic neuropathy. Minerva Endocrinol. 2014;39:201–7.

    CAS  PubMed  Google Scholar 

  59. Ojetti V, Pitocco D, Scarpellini E, et al. Small bowel bacterial overgrowth and type 1 diabetes. Eur Rev Med Pharmacol Sci. 2009;13:419–23.

    CAS  PubMed  Google Scholar 

  60. Zietz B, Lock G, Straub RH, et al. Small-bowel bacterial overgrowth in diabetic subjects is associated with cardiovascular autonomic neuropathy. Diabetes Care. 2000;23:1200–1.

    Article  CAS  PubMed  Google Scholar 

  61. Gatopoulou A, Papanas N, Maltezos E. Diabetic gastrointestinal autonomic neuropathy: current status and new achievements for everyday clinical practice. Eur J Intern Med. 2012;23:499–505.

    Article  CAS  PubMed  Google Scholar 

  62. El-Salhy M. The possible role of the gut neuroendocrine system in diabetes gastroenteropathy. Histol Histopathol. 2002;17:1153–61.

    CAS  PubMed  Google Scholar 

  63. Phillips LK, Rayner CK, Jones KL, et al. An update on autonomic neuropathy affecting the gastrointestinal tract. Curr Diab Rep. 2006;6:417–23.

    Article  CAS  PubMed  Google Scholar 

  64. Samsom M, Jebbink RJ, Akkermans LM, et al. Abnormalities of antroduodenal motility in type I diabetes. Diabetes Care. 1996;19:21–7.

    Article  CAS  PubMed  Google Scholar 

  65. Nguyen LA, Snape WJ. Clinical presentation and pathophysiology of gastroparesis. Gastroenterol Clin N Am. 2015;44:21–30.

    Article  Google Scholar 

  66. Chandrasekharan B, Anitha M, Blatt R, et al. Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterol Motil. 2011;23:131–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Bharucha AE, Low P, Camilleri M, et al. A randomised controlled study of the effect of cholinesterase inhibition on colon function in patients with diabetes mellitus and constipation. Gut. 2013;62:708–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Jung HK, Kim DY, Moon IH, et al. Colonic transit time in diabetic patients—comparison with healthy subjects and the effect of autonomic neuropathy. Yonsei Med J. 2003;44:265–72.

    Article  PubMed  Google Scholar 

  69. Søfteland E, Brock C, Frøkjær JB, et al. Rectal sensitivity in diabetes patients with symptoms of gastroparesis. J Diabetes Res. 2014;2014:784841.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Rosztóczy A, Róka R, Várkonyi T, et al. Regional differences in the manifestation of gastrointestinal motor disorders in type 1 diabetic patients with autonomic neuropathy. Z Gastroenterol. 2004;42:1295–300.

    Article  PubMed  Google Scholar 

  71. Valdovinos MA, Camilleri M, Zimmerman BR. Chronic diarrhea in diabetes mellitus: mechanisms and an approach to diagnosis and treatment. Mayo Clin Proc. 1993;68:691–702.

    Article  CAS  PubMed  Google Scholar 

  72. Mourad FH, Gorard D, Thillainayagam AV, et al. Effective treatment of diabetic diarrhea with somatostatin analogue, octreotide. Gut. 1992;33:1578–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Horváth VJ, Izbéki F, Lengyel C, et al. Diabetic gastroparesis: functional/morphologic background, diagnosis, and treatment options. Curr Diab Rep. 2014;14:527–33.

    Article  PubMed  Google Scholar 

  74. Bytzer P, Talley NJ, Jones MP, et al. Oral hypoglycaemic drugs and gastrointestinal symptoms in diabetes mellitus. Aliment Pharmacol Ther. 2001;15:137–42.

    Article  CAS  PubMed  Google Scholar 

  75. Ruiter R, Visser LE, van Herk-Sukel MP, et al. Lower risk of cancer in patients on metformin in comparison with those on sulfonylurea derivatives: results from a large population-based follow-up. Diabetes Care. 2012;35:119–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Noto H, Goto A, Tsujimoto T, et al. Cancer risk in diabetic patients treated with metformin: a systematic review. PLoS One. 2012;7, e33411.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Zhang ZJ, Zheng ZJ, Kan H, et al. Reduced risk of colorectal cancer with metformin therapy in patients with type 2 diabetes. Diabetes Care. 2011;34:2323–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Landman GWD, Kleefstra N, van Hateren KJJ, et al. Metformin associated with lower cancer mortality in type 2 diabetes. Diabetes Care. 2010;33:322–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Viktor József Horváth, Zsuzsanna Putz, Ferenc Izbéki, Anna Erzsébet Körei, László Gerő, Csaba Lengyel, Péter Kempler, and Tamás Várkonyi declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor József Horváth.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Neuropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horváth, V.J., Putz, Z., Izbéki, F. et al. Diabetes-Related Dysfunction of the Small Intestine and the Colon: Focus on Motility. Curr Diab Rep 15, 94 (2015). https://doi.org/10.1007/s11892-015-0672-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0672-8

Keywords

Navigation