Skip to main content
Log in

Genetics of Coronary Artery Disease and Myocardial Infarction - 2013

  • Cardiovascular Genomics (C O'Donnell, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Coronary artery disease is a complex disease influenced by modifiable risk factors as well as genetic susceptibility. The genetics of coronary artery disease and myocardial infarction have long been enigmatic. Recent advances in molecular genetics and biology, bioinformatics, and statistics have allowed us to study the interaction of exogenous and endogenous factors. Recent genome-wide association studies and their meta-analyses have included thousands of patients and healthy individuals and provided the statistical power to identify genetic variants, each associated with a rather small increase in risk. Thus far, more than 45 risk loci have been identified. Nevertheless, the search for genetics-based improvements in therapy and prevention has just begun. Hitherto unrecognized mechanisms may provide promising drug targets and early interventional strategies. Furthermore, the sum of risk alleles may facilitate risk assessment as they provide complementary information to traditional risk scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123:933–44.

    Article  PubMed  Google Scholar 

  2. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet. 2004;364:937–52.

    Article  PubMed  Google Scholar 

  3. Myers RH, Kiely DK, Cupples LA, Kannel WB. Parental history is an independent risk factor for coronary artery disease: the Framingham Study. Am Heart J. 1990;120:963–9.

    Article  PubMed  CAS  Google Scholar 

  4. Murabito JM, Pencina MJ, Nam B-H, D'agostino RB, Wang TJ, Lloyd-Jones D, et al. Sibling cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults. JAMA. 2005;294:3117–23.

    Article  PubMed  CAS  Google Scholar 

  5. Mayer B, Erdmann J, Schunkert H. Genetics and heritability of coronary artery disease and myocardial infarction. Clin Res Cardiol. 2007;96:1–7.

    Article  PubMed  Google Scholar 

  6. Schunkert H, Erdmann J, Samani NJ. Genetics of myocardial infarction: a progress report. Eur Heart J. 2010;31:918–25.

    Article  PubMed  Google Scholar 

  7. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, et al. A common variant on Chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491–3.

    Article  PubMed  CAS  Google Scholar 

  8. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357:443–53.

    Article  PubMed  CAS  Google Scholar 

  9. Consortium WTCC. Genome-wide association study of 14,000 cases of 7 common diseases and 3000 shared controls. Nature. 2007;447:661–78.

    Article  Google Scholar 

  10. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  PubMed  CAS  Google Scholar 

  11. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001;409:928–33.

    Article  PubMed  CAS  Google Scholar 

  12. Topol EJ, Murray SS, Frazer KA. The genomics gold rush. JAMA. 2007;298:218–21.

    Article  PubMed  CAS  Google Scholar 

  13. Preuss M, König IR, Thompson JR, Erdmann J, Absher DM, Assimes TL, et al. Design of the Coronary ARtery DIsease Genome-Wide Replication And Meta-analysis (CARDIoGRAM) study: a genome-wide association meta-analysis involving more than 22,000 cases and 60,000 controls. Circ Cardiovasc Genet. 2010;3:475–83.

    Article  PubMed  CAS  Google Scholar 

  14. Coronary Artery Disease C4D Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies 5 new loci for coronary artery disease. Nat Genet. 2011;43:339–44.

    Article  Google Scholar 

  15. •• Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43:333–8. The CARDIoGRAM consortium identified 13 new susceptibility loci in a meta-analysis of more than 20,000 cases and 60,000 controls.

    Article  PubMed  CAS  Google Scholar 

  16. Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, et al. The CARDIoGRAMplusC4D Consortium. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2012.

  17. Gardemann A, Weiss T, Schwartz O, Eberbach A, Katz N, Hehrlein FW, et al. Gene polymorphism but not catalytic activity of angiotensin I-converting enzyme is associated with coronary artery disease and myocardial infarction in low-risk patients. Circulation. 1995;92:2796–9.

    Article  PubMed  CAS  Google Scholar 

  18. Winkelmann BR, Nauck M, Klein B, Russ AP, Böhm BO, Siekmeier R, et al. Deletion polymorphism of the angiotensin I-converting enzyme gene is associated with increased plasma angiotensin-converting enzyme activity but not with increased risk for myocardial infarction and coronary artery disease. Ann Intern Med. 1996;125:19–25.

    Article  PubMed  CAS  Google Scholar 

  19. Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, et al. Myocardial Infarction Genetics Consortium. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41:334–41.

    Article  PubMed  CAS  Google Scholar 

  20. The IBC. 50 K CAD Consortium. Large-scale gene-centric analysis identifies novel variants for coronary artery disease. Visscher PM, editor. PLoS Genet. 2011;7:e1002260.

    Article  Google Scholar 

  21. Erdmann J, Grosshennig A, Braund PS, König IR, Hengstenberg C, Hall AS, et al. New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet. 2009;41:280–2.

    Article  PubMed  CAS  Google Scholar 

  22. Wang F, Xu C-Q, He Q, Cai J-P, Li X-C, Wang D, et al. Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population. Nat Genet. 2011;43:345–9.

    Article  PubMed  CAS  Google Scholar 

  23. Tregouet D-A, König IR, Erdmann J, Munteanu A, Braund PS, Hall AS, et al. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet. 2009;41:283–5.

    Article  PubMed  CAS  Google Scholar 

  24. McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, et al. A common allele on Chromosome 9 associated with coronary heart disease. Science. 2007;316:1488–91.

    Article  PubMed  CAS  Google Scholar 

  25. • Reilly MP, Li M, He J, Ferguson JF, Stylianou IM, Mehta NN, et al. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: 2 genome-wide association studies. Lancet. 2011;377:383–92. Reilly et al. identified the ABO and ADAMTS7 loci as susceptibility loci and discovered an association of ADAMTS-7 with CAD but not MI.

    Article  PubMed  CAS  Google Scholar 

  26. Gudbjartsson DF, Bjornsdottir US, Halapi E, Helgadottir A, Sulem P, Jonsdottir GM, et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet. 2009;41:342–7.

    Article  PubMed  CAS  Google Scholar 

  27. Schunkert H, Götz A, Braund P, McGinnis R, Tregouet D-A, Mangino M, et al. Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation. 2008;117:1675–84.

    Article  PubMed  Google Scholar 

  28. Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361:2518–28.

    Article  PubMed  CAS  Google Scholar 

  29. Wild PS, Zeller T, Schillert A, Szymczak S, Sinning CR, Deiseroth A, et al. A genome-wide association study identifies LIPA as a susceptibility gene for coronary artery disease. Circ Cardiovasc Genet. 2011;4:403–12.

    Article  PubMed  Google Scholar 

  30. Soranzo N, Spector TD, Mangino M, Kühnel B, Rendon A, Teumer A, et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet. 2009;41:1182–90.

    Article  PubMed  CAS  Google Scholar 

  31. Helgadottir A, Thorleifsson G, Magnusson KP, Gretarsdottir S, Steinthorsdottir V, Manolescu A, et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm, and intracranial aneurysm. Nat Genet. 2008;40:217–24.

    Article  PubMed  CAS  Google Scholar 

  32. Peden JF, Farrall M. Thirty-five common variants for coronary artery disease: the fruits of much collaborative labor. Hum Mol Genet. 2011;20:R198–205.

    Article  PubMed  CAS  Google Scholar 

  33. D'agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117:743–53.

    Article  PubMed  Google Scholar 

  34. Paynter NP, Chasman DI, Paré G, Buring JE, Cook NR, Miletich JP, et al. Association between a literature-based genetic risk score and cardiovascular events in women. JAMA. 2010;303:631–7.

    Article  PubMed  CAS  Google Scholar 

  35. Ripatti S, Tikkanen E, Orho-Melander M, Havulinna AS, Silander K, Sharma A, et al. A multilocus genetic risk score for coronary heart disease: case–control and prospective cohort analyses. Lancet. 2010;376:1393–400.

    Article  PubMed  Google Scholar 

  36. • Hughes M, Saarela O, Stritzke J, Kee F, Silander K, Klopp N, et al. Genetic markers enhance coronary risk prediction in men: the MORGAM Prospective Cohorts. Schäfer A, editor. PLoS One. 2012;7:e40922. The inclusion of genetic data in risk scores improves risk classification in middle-aged individuals.

    Article  PubMed  CAS  Google Scholar 

  37. Thanassoulis G, Peloso GM, Pencina MJ, Hoffmann U, Fox CS, Cupples LA, et al. A genetic risk score is associated with incident cardiovascular disease and coronary artery calcium: the Framingham Heart Study. Circ Cardiovasc Genet. 2012;5:113–21.

    Article  PubMed  CAS  Google Scholar 

  38. Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40:189–97.

    Article  PubMed  CAS  Google Scholar 

  39. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical, and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    Article  PubMed  CAS  Google Scholar 

  40. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–76.

    Article  PubMed  CAS  Google Scholar 

  41. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–87.

    Article  PubMed  CAS  Google Scholar 

  42. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, et al. International Consortium for Blood Pressure Genome-Wide Association Studies; genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–9.

    Article  PubMed  CAS  Google Scholar 

  43. O'Donnell CJ, Kavousi M, Smith AV, Kardia SLR, Feitosa MF, Hwang S-J, et al. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation. 2011;124:2855–64.

    Article  PubMed  Google Scholar 

  44. Liu C-J. The role of ADAMTS-7 and ADAMTS-12 in the pathogenesis of arthritis. Nat Clin Pract Rheumatol. 2009;5:38–45.

    Article  PubMed  Google Scholar 

  45. Liu C-J, Kong W, Ilalov K, Yu S, Xu K, Prazak L, et al. ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein. FASEB J. 2006;20:988–90.

    Article  PubMed  CAS  Google Scholar 

  46. Wang L, Zheng J, Bai X, Liu B, Liu C-J, Xu Q, et al. ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res. 2009;104:688–98.

    Article  PubMed  CAS  Google Scholar 

  47. •• Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466:714–9. This study identified the mechanism by which the SORT1 locus is increasing blood lipid levels.

    Article  PubMed  CAS  Google Scholar 

  48. Abifadel M, Varret M, Rabès J-P, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6.

    Article  PubMed  CAS  Google Scholar 

  49. Brautbar A, Ballantyne CM. Pharmacological strategies for lowering LDL cholesterol: statins and beyond. Nat Rev Cardiol. 2011;8:253–65.

    Article  PubMed  CAS  Google Scholar 

  50. Cameron J, Holla ØL, Ranheim T, Kulseth MA, Berge KE, Leren TP. Effect of mutations in the PCSK9 gene on the cell surface LDL receptors. Hum Mol Genet. 2006;15:1551–8.

    Article  PubMed  CAS  Google Scholar 

  51. Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.

    Article  PubMed  CAS  Google Scholar 

  52. Giugliano RP, Desai NR, Kohli P, Rogers WJ, Somaratne R, Huang F, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet. 2012;380:2007–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

Thorsten Kessler declares that he has no conflict of interest.

Jeanette Erdmann has received grant support from Cardiogenics and Atherogenomics.

Heribert Schunkert has received grant support from Cardiogenics and Atherogenomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heribert Schunkert.

Additional information

This article is part of the Topical Collection on Cardiovascular Genomics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, T., Erdmann, J. & Schunkert, H. Genetics of Coronary Artery Disease and Myocardial Infarction - 2013. Curr Cardiol Rep 15, 368 (2013). https://doi.org/10.1007/s11886-013-0368-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0368-0

Keywords

Navigation