Skip to main content
Log in

Imaging the penumbra in acute stroke

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Imaging continues to have a huge impact on the understanding of the ischemic penumbra and the management of acute stroke. Determinants of penumbral tissue fate, such as age, hyperglycemia, hematocrit, and oxygen concentration, are increasingly being recognized using neuroimaging. The significance of the penumbra in the white matter and in posterior circulation stroke is also becoming clearer. Neuroimaging is also making invaluable contributions to clinical decision making in acute stroke, especially in relation to reperfusion therapies in the 3- to 6-hour time window. Despite ongoing questions over the choice of parameters to identify the penumbra and their respective clinical usefulness, imaging is gaining widespread use in acute stroke management. However, definitive evidence of its benefit is still lacking. This review explores the recent progress and controversies relating to imaging of the penumbra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Astrup J, Siesjo BK, Symon L: Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 1981, 12:723–725.

    PubMed  CAS  Google Scholar 

  2. Baron JC: Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis 2001, 11(Suppl 1):2–8.

    Article  PubMed  Google Scholar 

  3. Dewar D, Yam P, McCulloch J: Drug development for stroke: importance of protecting cerebral white matter. Eur J Pharmacol 1999, 375:41–50.

    Article  PubMed  CAS  Google Scholar 

  4. Falcao AL, Reutens DC, Markus R, et al.: The resistance to ischemia of white and gray matter after stroke. Ann Neurol 2004, 56:695–701.

    Article  PubMed  Google Scholar 

  5. Koga M, Reutens DC, Wright P, et al.: The existence and evolution of diffusion-perfusion mismatched tissue in white and gray matter after acute stroke. Stroke 2005, 36:2132–2137.

    Article  PubMed  Google Scholar 

  6. Simon JE, Bristow MS, Lu H, et al.: A novel method to derive separate gray and white matter cerebral blood flow measures from MR imaging of acute ischemic stroke patients. J Cereb Blood Flow Metab 2005, 25:1236–1243.

    Article  PubMed  Google Scholar 

  7. Bristow MS, Simon JE, Brown RA, et al.: MR perfusion and diffusion in acute ischemic stroke: human gray and white matter have different thresholds for infarction. J Cereb Blood Flow Metab 2005, 25:1280–1287.

    Article  PubMed  Google Scholar 

  8. Ostrem JL, Saver JL, Alger JR, et al.: Acute basilar artery occlusion: diffusion-perfusion MRI characterization of tissue salvage in patients receiving intra-arterial stroke therapies. Stroke 2004, 35:e30–34.

    Article  PubMed  Google Scholar 

  9. Montavont A, Nighoghossian N, Derex L, et al.: Intravenous r-TPA in vertebrobasilar acute infarcts. Neurology 2004, 62:1854–1856.

    PubMed  CAS  Google Scholar 

  10. Pialat JB, Wiart M, Nighoghossian N, et al.: Evolution of lesion volume in acute stroke treated by intravenous t-PA. J Magn Reson Imaging 2005, 22:23–28.

    Article  PubMed  Google Scholar 

  11. Weimar C, Konig IR, Kraywinkel K, et al.: Age and National Institutes of Health Stroke Scale Score within 6 hours after onset are accurate predictors of outcome after cerebral ischemia: development and external validation of prognostic models. Stroke 2004, 35:158–162.

    Article  PubMed  CAS  Google Scholar 

  12. Bruno A, Biller J, Adams HP Jr, et al.: Acute blood glucose level and outcome from ischemic stroke. Trial of ORG 10172 in Acute Stroke Treatment (TOAST) Investigators. Neurology 1999, 52:280–284.

    PubMed  CAS  Google Scholar 

  13. Gagnon DR, Zhang TJ, Brand FN, Kannel WB: Hematocrit and the risk of cardiovascular disease—the Framingham study: a 34-year follow-up. Am Heart J 1994, 127:674–682.

    Article  PubMed  CAS  Google Scholar 

  14. Parsons MW, Barber PA, Desmond PM, et al.: Acute hyperglycemia adversely affects stroke outcome: a magnetic resonance imaging and spectroscopy study. Ann Neurol 2002, 52:20–28.

    Article  PubMed  Google Scholar 

  15. Baird TA, Parsons MW, Phanh T, et al.: Persistent post-stroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. Stroke 2003, 34:2208–2214.

    Article  PubMed  CAS  Google Scholar 

  16. Garg R, Chaudhuri A, Munschauer F, Dandona P: Hyperglycemia, insulin, and acute ischemic stroke: a mechanistic justification for a trial of insulin infusion therapy. Stroke 2006, 37:267–273.

    Article  PubMed  CAS  Google Scholar 

  17. Ay H, Koroshetz WJ, Vangel M, et al.: Conversion of ischemic brain tissue into infarction increases with age. Stroke 2005, 36:2632–2636.

    Article  PubMed  Google Scholar 

  18. Allport LE, Parsons MW, Butcher KS, et al.: Elevated hematocrit is associated with reduced reperfusion and tissue survival in acute stroke. Neurology 2005, 65:1382–1387.

    Article  PubMed  CAS  Google Scholar 

  19. Singhal AB, Benner T, Roccatagliata L, et al.: A pilot study of normobaric oxygen therapy in acute ischemic stroke. Stroke 2005, 36:797–802.

    Article  PubMed  Google Scholar 

  20. Nakajima S, Meyer JS, Amano T, et al.: Cerebral vasomotor responsiveness during 100% oxygen inhalation in cerebral ischemia. Arch Neurol 1983, 40:271–276.

    PubMed  CAS  Google Scholar 

  21. Rusyniak DE, Kirk MA, May JD, et al.: Hyperbaric oxygen therapy in acute ischemic stroke: results of the Hyperbaric Oxygen in Acute Ischemic Stroke Trial Pilot Study. Stroke 2003, 34:571–574.

    Article  PubMed  Google Scholar 

  22. Fiehler J, Remmele C, Kucinski T, et al.: Reperfusion after severe local perfusion deficit precedes hemorrhagic transformation: an MRI study in acute stroke patients. Cerebrovasc Dis 2005, 19:117–124.

    Article  PubMed  Google Scholar 

  23. Selim M, Fink JN, Kumar S, et al.: Predictors of hemorrhagic transformation after intravenous recombinant tissue plasminogen activator: prognostic value of the initial apparent diffusion coefficient and diffusion-weighted lesion volume. Stroke 2002, 33:2047–2052.

    Article  PubMed  CAS  Google Scholar 

  24. Alsop DC, Makovetskaya E, Kumar S, et al.: Markedly reduced apparent blood volume on bolus contrast magnetic resonance imaging as a predictor of hemorrhage after thrombolytic therapy for acute ischemic stroke. Stroke 2005, 36:746–750.

    Article  PubMed  Google Scholar 

  25. Latour LL, Kang DW, Ezzeddine MA, et al.: Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol 2004, 56:468–477.

    Article  PubMed  Google Scholar 

  26. Warach S, Latour LL: Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. Stroke 2004, 35:2659–2661.

    Article  PubMed  Google Scholar 

  27. Hjort N, Christensen S, Solling C, et al.: Ischemic injury detected by diffusion imaging 11 minutes after stroke. Ann Neurol 2005, 58:462–465.

    Article  PubMed  Google Scholar 

  28. Lin W, Lee JM, Lee YZ, et al.: Temporal relationship between apparent diffusion coefficient and absolute measurements of cerebral blood flow in acute stroke patients. Stroke 2003, 34:64–70.

    Article  PubMed  Google Scholar 

  29. Hamon M, Marie RM, Clochon P, et al.: Quantitative relationships between ADC and perfusion changes in acute ischemic stroke using combined diffusion-weighted imaging and perfusion MR (DWI/PMR). J Neuroradiol 2005, 32:118–124.

    PubMed  CAS  Google Scholar 

  30. Nicoli F, Lefur Y, Denis B, et al.: Metabolic counterpart of decreased apparent diffusion coefficient during hyperacute ischemic stroke: a brain proton magnetic resonance spectroscopic imaging study. Stroke 2003, 34:e82–87.

    Article  PubMed  CAS  Google Scholar 

  31. Guadagno JV, Warburton EA, Jones PS, et al.: The diffusion-weighted lesion in acute stroke: heterogeneous patterns of flow/metabolism uncoupling as assessed by quantitative positron emission tomography. Cerebrovasc Dis 2005, 19:239–246.

    Article  PubMed  Google Scholar 

  32. Guadagno JV, Warburton EA, Aigbirhio FI, et al.: Does the acute diffusion-weighted imaging lesion represent penumbra as well as core? A combined quantitative PET/MRI voxel-based study. J Cereb Blood Flow Metab 2004, 24:1249–1254.

    Article  PubMed  Google Scholar 

  33. Loh PS, Butcher KS, Parsons MW, et al.: Apparent diffusion coefficient thresholds do not predict the response to acute stroke thrombolysis. Stroke 2005, 36:2626–2631.

    Article  PubMed  Google Scholar 

  34. Kidwell CS, Saver JL, Mattiello J, et al.: Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol 2000, 47:462–469.

    Article  PubMed  CAS  Google Scholar 

  35. Fiehler J, Knudsen K, Kucinski T, et al.: Predictors of apparent diffusion coefficient normalization in stroke patients. Stroke 2004, 35:514–519.

    Article  PubMed  Google Scholar 

  36. Suzuki S, Kidwell CS, Starkman S, et al.: Use of multimodal MRI and novel endovascular therapies in a patient ineligible for intravenous tissue plasminogen activator. Stroke 2005, 36:e77–79.

    Article  PubMed  Google Scholar 

  37. Chalela JA, Kang DW, Luby M, et al.: Early magnetic resonance imaging findings in patients receiving tissue plasminogen activator predict outcome: Insights into the pathophysiology of acute stroke in the thrombolysis era. Ann Neurol 2004, 55:105–112.

    Article  PubMed  Google Scholar 

  38. Rivers CS, Wardlaw JM: What has diffusion imaging in animals told us about diffusion imaging in patients with ischaemic stroke? Cerebrovasc Dis 2005, 19:328–336.

    Article  PubMed  Google Scholar 

  39. Kidwell CS, Saver JL, Starkman S, et al.: Late secondary ischemic injury in patients receiving intraarterial thrombolysis. Ann Neurol 2002, 52:698–703.

    Article  PubMed  Google Scholar 

  40. Thijs VN, Somford DM, Bammer R, et al.: Influence of arterial input function on hypoperfusion volumes measured with perfusion-weighted imaging. Stroke 2004, 35:94–98.

    Article  PubMed  Google Scholar 

  41. Rose SE, Janke AL, Griffin M, et al.: Improved prediction of final infarct volume using bolus delay-corrected perfusion-weighted MRI: implications for the ischemic penumbra. Stroke 2004, 35:2466–2471.

    Article  PubMed  Google Scholar 

  42. Wu O, Ostergaard L, Koroshetz WJ, et al.: Effects of tracer arrival time on flow estimates in MR perfusion-weighted imaging. Magn Reson Med 2003, 50:856–864.

    Article  PubMed  Google Scholar 

  43. Sobesky J, Zaro Weber O, Lehnhardt FG, et al.: Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke. Stroke 2004, 35:2843–2847.

    Article  PubMed  CAS  Google Scholar 

  44. Grandin CB, Duprez TP, Smith AM, et al.: Which MR-derived perfusion parameters are the best predictors of infarct growth in hyperacute stroke? Comparative study between relative and quantitative measurements. Radiology 2002, 223:361–370.

    Article  PubMed  Google Scholar 

  45. Butcher KS, Parsons M, MacGregor L, et al.: Refining the perfusion-diffusion mismatch hypothesis. Stroke 2005, 36:1153–1159.

    PubMed  CAS  Google Scholar 

  46. Schellinger PD, Latour LL, Wu CS, et al.: The association between neurological deficit in acute ischemic stroke and mean transit time Comparison of four different perfusion MRI algorithms. Neuroradiology 2005, 47:1–9.

    Article  Google Scholar 

  47. Lee DH, Kang DW, Ahn JS, et al.: Imaging of the ischemic penumbra in acute stroke. Korean J Radiol 2005, 6:64–74.

    Article  PubMed  Google Scholar 

  48. Perkio J, Soinne L, Ostergaard L, et al.: Abnormal intravoxel cerebral blood flow heterogeneity in human ischemic stroke determined by dynamic susceptibility contrast magnetic resonance imaging. Stroke 2005, 36:44–49.

    Article  PubMed  Google Scholar 

  49. Sobesky J, Zaro Weber O, Lehnhardt FG, et al.: Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 2005, 36:980–985.

    Article  PubMed  Google Scholar 

  50. Heiss WD, Sobesky J, Hesselmann V: Identifying thresholds for penumbra and irreversible tissue damage. Stroke 2004, 35:2671–2674.

    Article  PubMed  Google Scholar 

  51. Kang DW, Chalela JA, Dunn W, Warach S: MRI screening before standard tissue plasminogen activator therapy is feasible and safe. Stroke 2005, 36:1939–1943.

    Article  PubMed  CAS  Google Scholar 

  52. Schellinger PD, Jansen O, Fiebach JB, et al.: Feasibility and practicality of MR imaging of stroke in the management of hyperacute cerebral ischemia. Am J Neuroradiol 2000, 21:1184–1189.

    PubMed  CAS  Google Scholar 

  53. U-King-Im JM, Trivedi RA, Graves MJ, et al.: Utility of an ultrafast magnetic resonance imaging protocol in recent and semi-recent strokes. J Neurol Neurosurg Psychiatry 2005, 76:1002–1005.

    Article  PubMed  CAS  Google Scholar 

  54. Kidwell CS, Chalela JA, Saver JL, et al.: Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA 2004, 292:1823–1830.

    Article  PubMed  CAS  Google Scholar 

  55. Hjort N, Butcher K, Davis SM, et al.: Magnetic resonance imaging criteria for thrombolysis in acute cerebral infarct. Stroke 2005, 36:388–397.

    Article  PubMed  CAS  Google Scholar 

  56. Hacke W, Albers G, Al-Rawi Y, et al.: The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intraveous desmoteplase. Stroke 2005, 36:66–73.

    Article  PubMed  CAS  Google Scholar 

  57. Ribo M, Molina CA, Rovira A, et al.: Safety and efficacy of intravenous tissue plasminogen activator stroke treatment in the 3- to 6-hour window using multimodal transcranial Doppler/MRI selection protocol. Stroke 2005, 36:602–606.

    Article  PubMed  CAS  Google Scholar 

  58. Singer OC, Du Mesnil De Rochemont R, et al.: Early functional recovery and the fate of the diffusion/perfusion mismatch in patients with proximal middle cerebral artery occlusion. Cerebrovasc Dis 2004, 17:13–20.

    Article  PubMed  Google Scholar 

  59. Wintermark M, Sesay M, Barbier E, et al.: Comparative overview of brain perfusion imaging techniques. Stroke 2005, 36:e83–99.

    Article  PubMed  Google Scholar 

  60. Mayer TE, Hamann GF, Baranczyk J, et al.: Dynamic CT perfusion imaging of acute stroke. Am J Neuroradiol 2000, 21:1441–1449.

    PubMed  CAS  Google Scholar 

  61. Schramm P, Schellinger PD, Klotz E, et al.: Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours’ duration. Stroke 2004, 35:1652–1658.

    Article  PubMed  Google Scholar 

  62. Wintermark M, Fischbein NJ, Smith WS, et al.: Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. Am J Neuroradiol 2005, 26:104–112.

    PubMed  Google Scholar 

  63. Muir KW, Halbert HM, Baird TA, et al.: Visual evaluation of perfusion CT imaging in acute stroke accurately estimates infarct volume and tissue viability. J Neurol Neurosurg Psychiatry 2006, 77:334–339.

    Article  PubMed  CAS  Google Scholar 

  64. Fiorella D, Heiserman J, Prenger E, Partovi S: Assessment of the reproducibility of postprocessing dynamic CT perfusion data. Am J Neuroradiol 2004, 25:97–107.

    PubMed  Google Scholar 

  65. Wintermark M, Reichhart M, Thiran JP, et al.: Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 2002, 51:417–432.

    Article  PubMed  Google Scholar 

  66. Wintermark M, Reichhart M, Cuisenaire O, et al.: Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 2002, 33:2025–2031.

    Article  PubMed  CAS  Google Scholar 

  67. Hellier KD, Hampton JL, Guadagno JV, et al.: Perfusion CT helps decision making for thrombolysis when there is no clear time of onset. J Neurol Neurosurg Psychiatry 2006, In press.

  68. Davalos A, Blanco M, Pedraza S, et al.: The clinical-DWI mismatch: a new diagnostic approach to the brain tissue at risk of infarction. Neurology 2004, 62:2187–2192.

    PubMed  CAS  Google Scholar 

  69. Prosser J, Butcher K, Allport L, et al.: Clinical-diffusion mismatch predicts the putative penumbra with high specificity. Stroke 2005, 36:1700–1704.

    Article  PubMed  Google Scholar 

  70. Kent DM, Hill MD, Ruthazer R, et al.: "Clinical-CT mismatch" and the response to systemic thrombolytic therapy in acute ischemic stroke. Stroke 2005, 36:1695–1699.

    Article  PubMed  CAS  Google Scholar 

  71. Butcher K, Lee SB, Parsons M, et al.: Increased blood volume maintains viability in tissue with isolated focal swelling on CT in acute stroke. Stroke 2005, 36:418.

    Google Scholar 

  72. Markus R, Reutens DC, Kazui S, et al.: Hypoxic tissue in ischaemic stroke: persistence and clinical consequences of spontaneous survival. Brain 2004, 127:1427–1436.

    Article  PubMed  CAS  Google Scholar 

  73. Lee JM, Vo KD, An H, et al.: Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients. Ann Neurol 2003, 53:227–232.

    Article  PubMed  Google Scholar 

  74. Walker PM, Ben Salem D, Lalande A, et al.: Time course of NAA T2 and ADC(w) in ischaemic stroke patients: 1H MRS imaging and diffusion-weighted MRI. J Neurol Sci 2004, 220:23–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Baron MD, FRCP, FMedSci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moustafa, R.R., Baron, JC. Imaging the penumbra in acute stroke. Curr Atheroscler Rep 8, 281–289 (2006). https://doi.org/10.1007/s11883-006-0005-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-006-0005-0

Keywords

Navigation