Skip to main content
Log in

Statistical learning and dyslexia: a systematic review

  • Published:
Annals of Dyslexia Aims and scope Submit manuscript

Abstract

The existing literature on developmental dyslexia (hereafter: dyslexia) often focuses on isolating cognitive skills which differ across dyslexic and control participants. Among potential correlates, previous research has studied group differences between dyslexic and control participants in performance on statistical learning tasks. A statistical learning deficit has been proposed to be a potential cause and/or a marker effect for early detection of dyslexia. It is therefore of practical importance to evaluate the evidence for a group difference. From a theoretical perspective, such a group difference would provide information about the causal chain from statistical learning to reading acquisition. We provide a systematic review of the literature on such a group difference. We conclude that there is insufficient high-quality data to draw conclusions about the presence or absence of an effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. For the current data, the results vary slightly across statistical approaches, though the conclusions converge. A fixed-effect rather than a random-effect model provides an effect size estimate of d = −0.10, 95 % CI [−0.30, 0.1], as it gives strong weighting to the study of Kirk and Pothos, which used a large sample size and found better performance of dyslexic than control participants. We also performed equivalent analyses using a Bayesian approach (in R with the package “bayesmeta”; Roever & Friede, 2016). The prior used was a one-sided Cauchy distribution, assuming that an effect would reflect higher accuracy for control than dyslexic groups, centred on zero. The mean of the posterior distribution was d = 0.25, with a 95 % Bayesian credibility interval of [−0.41; 0.94]. Thus, all approaches converge in suggesting that the estimated effect size is smaller than the one shown in Figure 1, and that there is a high degree of uncertainty.

References

  • Apfelbaum, K. S., Hazeltine, E., & McMurray, B. (2013). Statistical learning in reading: variability in irrelevant letters helps children learn phonics skills. Developmental Psychology, 49(7), 1348.

    Article  Google Scholar 

  • Arciuli, J., & Simpson, I. C. (2012). Statistical learning is related to reading ability in children and adults. Cognitive Science, 36(2), 286–304.

    Article  Google Scholar 

  • Bennett, I. J., Romano, J. C., Howard Jr., J. H., & Howard, D. V. (2008). Two forms of implicit learning in young adults with dyslexia. Annals of the New York Academy of Sciences, 1145(1), 184–198.

    Article  Google Scholar 

  • Borenstein, M., Hedges, L. V., Higgins, J., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester, UK: John Wiley & Sons.

    Book  Google Scholar 

  • Borenstein, M., Hedges, L. V., Higgins, J., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1(2), 97–111.

    Article  Google Scholar 

  • Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafo, M. R. (2013). Confidence and precision increase with high statistical power. Nature Reviews Neuroscience, 14(8). doi:10.1038/nrn3475-c4.

  • Cassar, M., & Treiman, R. (1997). The beginnings of orthographic knowledge: Children’s knowledge of double letters in words. Journal of Educational Psychology, 89(4), 631.

    Article  Google Scholar 

  • Castles, A., & Coltheart, M. (1993). Varieties of developmental dyslexia. Cognition, 47, 149–180.

    Article  Google Scholar 

  • Christley, R. (2010). Power and error: increased risk of false positive results in underpowered studies. Open Epidemiology Journal, 3, 16–19.

    Article  Google Scholar 

  • Coltheart, M. (2015). What kinds of things cause children’s reading difficulties? Australian Journal of Learning Difficulties, 1–10.

  • Cramer, A. O., van Ravenzwaaij, D., Matzke, D., Steingroever, H., Wetzels, R., Grasman, R. P.,. .. Wagenmakers, E.-J. (2015). Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies. Psychonomic Bulletin & Review, 1–8.

  • Deacon, S. H., Benere, J., & Castles, A. (2012). Chicken or egg? Untangling the relationship between orthographic processing skill and reading accuracy. Cognition, 122(1), 110–117.

    Article  Google Scholar 

  • Deroost, N., Zeischka, P., Coomans, D., Bouazza, S., Depessemier, P., & Soetens, E. (2010). Intact first-and second-order implicit sequence learning in secondary-school-aged children with developmental dyslexia. Journal of Clinical and Experimental Neuropsychology, 32(6), 561–572.

    Article  Google Scholar 

  • Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5.

  • Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634.

    Article  Google Scholar 

  • Fanelli, D. (2009). How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data. PloS One, 4(5), e5738.

    Article  Google Scholar 

  • Frost, R., Siegelman, N., Narkiss, A., & Afek, L. (2013). What predicts successful literacy acquisition in a second language? Psychological Science, 24(7), 1243–1252.

    Article  Google Scholar 

  • Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Domain generality versus modality specificity: the paradox of statistical learning. Trends in Cognitive Sciences, 19(3), 117–125.

    Article  Google Scholar 

  • Gelman, A., & Carlin, J. (2014). Beyond power calculations assessing type S (sign) and type M (magnitude) errors. Perspectives on Psychological Science, 9(6), 641–651.

    Article  Google Scholar 

  • Gelman, A., & Loken, E. (2014). The statistical crisis in science: data-dependent analysis—a “garden of forking paths”—explains why many statistically significant comparisons don't hold up. American Scientist, 102, 460–465. Retrieved from http://www.stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf.

  • Gelman, A., & Stern, H. (2006). The difference between “significant” and “not significant” is not itself statistically significant. The American Statistician, 60(4), 328–331.

    Article  Google Scholar 

  • Gelman, A., & Weakliem, D. (2009). Of beauty, sex and power: too little attention has been paid to the statistical challenges in estimating small effects. American Scientist, 97(4), 310–316.

    Article  Google Scholar 

  • Gunn, L. J., Chapeau-Blondeau, F., McDonnell, M., Davis, B., Allison, A., & Abbott, D. (2016). Too good to be true: when overwhelming evidence fails to convince. arXiv preprint arXiv:1601.00900.

  • Hedenius, M., Persson, J., Alm, P. A., Ullman, M. T., Howard, J. H., Howard, D. V., & Jennische, M. (2013). Impaired implicit sequence learning in children with developmental dyslexia. Research in Developmental Disabilities, 34(11), 3924–3935.

    Article  Google Scholar 

  • Howard, J. H., Howard, D. V., Japikse, K. C., & Eden, G. F. (2006). Dyslexics are impaired on implicit higher-order sequence learning, but not on implicit spatial context learning. Neuropsychologia, 44(7), 1131–1144.

    Article  Google Scholar 

  • Ioannidis, J. P. A. (2005). Why most published research findings are false. Plos Medicine, 2(8), 696–701. doi:10.1371/journal.pmed.0020124.

  • Ise, E., & Schulte-Körne, G. (2012). Implizites Lernen und LRS: Spielen Defizite im impliziten Lernen eine Rolle bei der Entstehung von Schwierigkeiten im Lesen und Rechtschreiben? Lernen und Lernstörungen, 1(2), 79–97. doi:10.1024/2235-0977/a000011.

  • Ise, E., Arnoldi, C. J., Bartling, J., & Schulte-Körne, G. (2012). Implicit learning in children with spelling disability: evidence from artificial grammar learning. Journal of Neural Transmission, 119(9), 999–1010.

    Article  Google Scholar 

  • Jiménez-Fernández, G., Vaquero, J. M., Jiménez, L., & Defior, S. (2011). Dyslexic children show deficits in implicit sequence learning, but not in explicit sequence learning or contextual cueing. Annals of Dyslexia, 61(1), 85–110.

    Article  Google Scholar 

  • John, L. K., Loewenstein, G., & Prelec, D. (2012). Measuring the prevalence of questionable research practices with incentives for truth telling. Psychological Science, 0956797611430953.

  • Kahneman, D. (2011). Thinking, fast and slow: Macmillan.

  • Kahta, S., & Schiff, R. (2016). Implicit learning deficits among adults with developmental dyslexia. Annals of Dyslexia, 1–16.

  • Kelly, S. W., Griffiths, S., & Frith, U. (2002). Evidence for implicit sequence learning in dyslexia. Dyslexia, 8(1), 43–52.

    Article  Google Scholar 

  • Kempe, V., & MacWhinney, B. (1998). The acquisition of case marking by adult learners of Russian and German. Studies in Second Language Acquisition, 20(04), 543–587.

    Article  Google Scholar 

  • Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: evidence for a domain general learning mechanism. Cognition, 83(2), B35–B42.

    Article  Google Scholar 

  • Laasonen, M., Väre, J., Oksanen-Hennah, H., Leppämäki, S., Tani, P., Harno, H., & Cleeremans, A. (2014). Project DyAdd: implicit learning in adult dyslexia and ADHD. Annals of Dyslexia, 64(1), 1–33.

    Article  Google Scholar 

  • Meehl, P. E. (1990). Why summaries of research on psychological theories are often Uninterpretable. Psychological Reports, 66(1), 195–244. doi:10.2466/Pr0.66.1.195-244.

  • Menghini, D., Hagberg, G. E., Caltagirone, C., Petrosini, L., & Vicari, S. (2006). Implicit learning deficits in dyslexic adults: an fMRI study. NeuroImage, 33(4), 1218–1226.

    Article  Google Scholar 

  • Menghini, D., Finzi, A., Benassi, M., Bolzani, R., Facoetti, A., Giovagnoli, S., et al. (2010). Different underlying neurocognitive deficits in developmental dyslexia: a comparative study. Neuropsychologia, 48(4), 863–872.

    Article  Google Scholar 

  • Nicolson, R., & Fawcett, A. (1990). Automaticity: a new framework for dyslexia research? Cognition, 35(2), 159–182.

    Article  Google Scholar 

  • Nigro, L., Jiménez-Fernández, G., Simpson, I. C., & Defior, S. (2015). Implicit learning of non-linguistic and linguistic regularities in children with dyslexia. Annals of Dyslexia, 1–17.

  • Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: evidence from performance measures. Cognitive Psychology, 19(1), 1–32.

    Article  Google Scholar 

  • Pacton, S., Perruchet, P., Fayol, M., & Cleeremans, A. (2001). Implicit learning out of the lab: the case of orthographic regularities. Journal of Experimental Psychology: General, 130(3), 401.

    Article  Google Scholar 

  • Pacton, S., Fayol, M., & Perruchet, P. (2005). Children's implicit learning of graphotactic and morphological regularities. Child Development, 76(2), 324–339.

    Article  Google Scholar 

  • Pavlidou, E. V., & Williams, J. M. (2010). Developmental dyslexia and implicit learning: evidence from an AGL transfer study. Procedia-Social and Behavioral Sciences, 2(2), 3289–3296.

    Article  Google Scholar 

  • Pavlidou, E. V., & Williams, J. M. (2014). Implicit learning and reading: insights from typical children and children with developmental dyslexia using the artificial grammar learning (AGL) paradigm. Research in Developmental Disabilities, 35(7), 1457–1472.

    Article  Google Scholar 

  • Pavlidou, E. V., Williams, J. M., & Kelly, L. M. (2009). Artificial grammar learning in primary school children with and without developmental dyslexia. Annals of Dyslexia, 59(1), 55–77.

    Article  Google Scholar 

  • Pavlidou, E. V., Kelly, L. M., & Williams, J. M. (2010). Do children with developmental dyslexia have impairments in implicit learning? Dyslexia, 16(2), 143–161.

    Article  Google Scholar 

  • Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101(2), 385–413.

    Article  Google Scholar 

  • Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: one phenomenon, two approaches. Trends in Cognitive Sciences, 10(5), 233–238.

    Article  Google Scholar 

  • Petersson, K.-M., Folia, V., & Hagoort, P. (2012). What artificial grammar learning reveals about the neurobiology of syntax. Brain and Language, 120(2), 83–95.

    Article  Google Scholar 

  • Pollo, T. C., Kessler, B., & Treiman, R. (2009). Statistical patterns in children’s early writing. Journal of Experimental Child Psychology, 104(4), 410–426.

    Article  Google Scholar 

  • Pothos, E. M. (2005). The rules versus similarity distinction. Behavioral and Brain Sciences, 28(01), 1–14.

    Google Scholar 

  • Pothos, E. M., & Kirk, J. (2004). Investigating learning deficits associated with dyslexia. Dyslexia, 10(1), 61–76.

    Article  Google Scholar 

  • Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6(6), 855–863.

    Article  Google Scholar 

  • Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of Experimental Psychology: General, 118(3).

  • Roever, C., & Friede, T. (2016). Package ‘bayesmeta’. Retrieved from https://cran.r-project.org/web/packages/bayesmeta/bayesmeta.pdf.

  • Roodenrys, S., & Dunn, N. (2008). Unimpaired implicit learning in children with developmental dyslexia. Dyslexia, 14(1), 1–15.

    Article  Google Scholar 

  • Rosenthal, R. (1979). The “file drawer problem” and tolerance for null results. Psychological Bulletin, 86(3), 638–641.

    Article  Google Scholar 

  • Rothe, J., Schulte-Körne, G., & Ise, E. (2014). Does sensitivity to orthographic regularities influence reading and spelling acquisition? A 1-year prospective study. Reading and Writing, 27(7), 1141–1161.

    Article  Google Scholar 

  • Rothe, J., Cornell, S., Ise, E., & Schulte-Körne, G. (2015). A comparison of orthographic processing in children with and without reading and spelling disorder in a regular orthography. Reading and Writing, 28(9), 1307–1332.

    Article  Google Scholar 

  • Rouder, J. N., Speckman, P. L., Sun, D. C., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237. doi:10.3758/Pbr.16.2.225.

  • Royall, R. M. (1986). The effect of sample-size on the meaning of significance tests. American Statistician, 40(4), 313–315. doi:10.2307/2684616.

  • Rüsseler, J., Gerth, I., & Münte, T. F. (2006). Implicit learning is intact in adult developmental dyslexic readers: evidence from the serial reaction time task and artificial grammar learning. Journal of Clinical and Experimental Neuropsychology, 28(5), 808–827.

    Article  Google Scholar 

  • Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926–1928.

    Article  Google Scholar 

  • Schimmack, U. (2012). The ironic effect of significant results on the credibility of multiple-study articles. Psychological Methods, 17(4), 551.

    Article  Google Scholar 

  • Schmidt, F. L. (1992). What do data really mean? Research findings, meta-analysis, and cumulative knowledge in psychology. American Psychologist, 47(10), 1173.

    Article  Google Scholar 

  • Schmidt, F. L. (1996). Statistical significance testing and cumulative knowledge in psychology: implications for training of researchers. Psychological Methods, 1(2), 115–129. doi:10.1037//1082-989x.1.2.115.

  • Seidenberg, M., & Gonnerman, L. M. (2000). Explaining derivational morphology as the convergence of codes. Trends in Cognitive Sciences, 4(9), 353–361.

    Article  Google Scholar 

  • Siegelman, N., & Frost, R. (2015). Statistical learning as an individual ability: theoretical perspectives and empirical evidence. Journal of Memory and Language, 81, 105–120.

    Article  Google Scholar 

  • Siegelman, N., Bogaerts, L., & Frost, R. (2016). Measuring individual differences in statistical learning: Current pitfalls and possible solutions. Behavior Research Methods, 1–15.

  • Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366. doi:10.1177/0956797611417632.

  • Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2014a). P-curve and effect size correcting for publication bias using only significant results. Perspectives on Psychological Science, 9(6), 666–681.

    Article  Google Scholar 

  • Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2014b). P-curve: a key to the file-drawer. Journal of Experimental Psychology: General, 143(2), 534–547. doi:10.1037/a0033242.

  • Staels, E. (2016). Cognitive causes of dyslexia: New hypotheses investigated using improved methodologies. Vrije Universiteit Brussel.

  • Sterling, T. D., Rosenbaum, W., & Weinkam, J. (1995). Publication decisions revisited: the effect of the outcome of statistical tests on the decision to publish and vice versa. The American Statistician, 49(1), 108–112.

    Google Scholar 

  • Stoodley, C. J., Harrison, E. P., & Stein, J. F. (2006). Implicit motor learning deficits in dyslexic adults. Neuropsychologia, 44(5), 795–798.

    Article  Google Scholar 

  • Stoodley, C. J., Ray, N. J., Jack, A., & Stein, J. F. (2008). Implicit learning in control, dyslexic, and garden-variety poor readers. Annals of the New York Academy of Sciences, 1145(1), 173–183.

    Article  Google Scholar 

  • Swanson, H. L. (1996). Meta-analysis, replication, social skills, and learning disabilities. The Journal of Special Education, 30(2), 213–221.

    Article  Google Scholar 

  • Treiman, R., Kessler, B., Zevin, J. D., Bick, S., & Davis, M. (2006). Influence of consonantal context on the reading of vowels: evidence from children. Journal of Experimental Child Psychology, 93(1), 1–24. doi:10.1016/J.Jecp.2005.06.008.

  • Van Elk, M., Matzke, D., Gronau, Q. F., Guan, M., Vandekerckhove, J., & Wagenmakers, E.-J. (2015). Meta-analyses are no substitute for registered replications: a skeptical perspective on religious priming. Frontiers in Psychology, 6.

  • Vicari, S., Marotta, L., Menghini, D., Molinari, M., & Petrosini, L. (2003). Implicit learning deficit in children with developmental dyslexia. Neuropsychologia, 41(1), 108–114.

    Article  Google Scholar 

  • Vicari, S., Finzi, A., Menghini, D., Marotta, L., Baldi, S., & Petrosini, L. (2005). Do children with developmental dyslexia have an implicit learning deficit? Journal of Neurology, Neurosurgery & Psychiatry, 76(10), 1392–1397.

    Article  Google Scholar 

  • Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48. Retrieved from http://www.jstatsoft.org/v36/i03/.

  • Waber, D. P., Marcus, D. J., Forbes, P. W., Bellinger, D. C., Weiler, M. D., Sorensen, L. G., & Curran, T. (2003). Motor sequence learning and reading ability: is poor reading associated with sequencing deficits? Journal of Experimental Child Psychology, 84(4), 338–354.

    Article  Google Scholar 

  • Ziegler, J., Castel, C., Pech-Georgel, C., George, F., Alario, F.-X., & Perry, C. (2008). Developmental dyslexia and the dual route model of reading: simulating individual differences and subtypes. Cognition, 107(1), 151–178.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Nic Badcock and Robert Ross for discussions about meta-analyses, and Robert Ross, Anne Castles, and Max Coltheart for helpful comments on earlier versions of this manuscript. We are further grateful to all authors who replied to our queries. This project was supported by a post-doctoral grant to XS by the Fondazione Marica De Vicenzi and Università degli Studi di Padova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xenia Schmalz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmalz, X., Altoè, G. & Mulatti, C. Statistical learning and dyslexia: a systematic review. Ann. of Dyslexia 67, 147–162 (2017). https://doi.org/10.1007/s11881-016-0136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11881-016-0136-0

Keywords

Navigation