Skip to main content

Advertisement

Log in

Climatological evaluation in a Central Anatolian city and indirect effects of climatological variation on air quality

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Climate is defined as the statistics of weather over a long period of time. Climate has a dynamic structure, and climate change is caused either by natural or anthropogenic effects. Meteorological parameters are routinely recorded by national weather stations. In this study, climate variability was analyzed in a mid-populated city in the middle of the Anatolian Peninsula. Humidity, temperature, precipitation, open surface evaporation, and solar radiation records over 57-year period from 1960 to 2016 were considered. The increase in temperature and solar radiation was obvious. The increase rates were 0.05 °C and 0.62 W/m2 for temperature and solar radiation, respectively. Relative humidity showed a declining trend from 64 to 53%. This study also aimed to evaluate the climate change of planetary boundary layer development, which influences air quality level. AERMET, which is the AERMOD meteorological preprocessor was exploited in order to simulate the planetary boundary layer height, and twice daily upper air soundings, wind speed, wind direction, ambient temperature, and cloud cover have been used as minimum required parameters. The complete meteorological data available were between 2006 and 2016; for that reason, the boundary layer was calculated for 11 years. The determined average boundary layer height was 1018 m in 2006 and was reduced to 889 m in 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CO2 :

Carbon dioxide

CH4 :

Methane

O3 :

Ozone

N2O:

Nitrous oxide

CFCs:

Chlorofluorocarbons

PBL:

Planetary boundary layer

TUIK:

Turkish Statistical Institute

BSk:

Cold semi-arid climate

Dca:

Hot summer continental climate

Doa:

Hot summer oceanic

CBL:

Convective boundary layer

SBL:

Stable boundary layer

L :

Monin–Obukhov length

θ :

Potential temperature

H :

Sensible heat flux

c p :

Specific heat

ρ :

Density

u * :

Friction velocity

r :

Albedo

w * :

Convective velocity scale

References

  • Baek HJ, Lee J, Lee HS, Hyun K, Cho C, Kwon WT, Marzin C, Gan SY, Kim MJ, Choi DH, Lee J, Lee J, Boo KO, Kanki HY, Lee J (2013) Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pac J Atmos Sci 49(5):603–618. 7. https://doi.org/10.1007/s13143-013-0053-7

    Article  Google Scholar 

  • Briggs J, Knapp A, Blair J, Heisler J, Hoch G, Lett M. McCarron, J (2005) An ecosystem in transition: causes and consequences of the conversion of mesic grassland to shrubland. BioScience55:243–254. https://doi.org/10.1641/00063568(2005)055[0243:AEITCA]2.0.CO;2

  • Cabello J, Morales M, Revah S (2017) Carbon dioxide consumption of the microalga Scenedesmus obtusiusculus under transient inlet CO2 concentration variations. Sci Total Environ 584:1310–1316. https://doi.org/10.1016/j.scitotenv.2017.02.002

    Article  CAS  Google Scholar 

  • Çetinkaya AY, Bilgili L, Kuzu SL (2018) Life cycle assessment and greenhouse gas emission evaluation from Aksaray solid waste disposal facility. Air Qual Atmos Health 11:549–558. https://doi.org/10.1007/s11869-018-0559-3

    Article  CAS  Google Scholar 

  • Chevuturi A, Klingaman NP, Turner AG, Hannah S (2018) Projected changes in the Asian-Australian monsoon region in 1.5° C and 2.0° C global-warming scenarios. Earth’s Future 6(3):339–358. https://doi.org/10.1002/2017EF000734

    Article  Google Scholar 

  • Cooper DI, Eichinger WE (1994) Structure of the atmosphere in an urban planetary boundary layer from Lidar and radiosonde observations. J Geophys Res 99:22937–22948. https://doi.org/10.1029/94JD01944

    Article  Google Scholar 

  • Deardorff JW (1980) Progress in understanding entrainment at the top of a mixed layer. Preprints, Workshop on the Planetary Boundary Layer. American Meteorologic Society, Boston, MA

    Google Scholar 

  • Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Charland A, Liu Y, Haugen M, Tsiang M, Rajaratnam B (2017) Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci 114(19):4881–4886. https://doi.org/10.1073/pnas.161808114

    Article  CAS  Google Scholar 

  • Fierer N, Schimel J (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787. https://doi.org/10.1016/S0038-0717(02)00007-X

    Article  CAS  Google Scholar 

  • Folland CK, Rayner NA, Brown SJ, Smith TM, Shen SSP, Parker DE, Sexton DMH (2001) Global temperature change and its uncertainties since 1861. Geophys Res Lett 28(13):2621–2624. https://doi.org/10.1029/2001GL012877

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci 103(39):14288–14293. https://doi.org/10.1073/pnas.0606291103

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.); Cambridge University Press: Cambridge, United Kingdom and New York, USA

  • IPCC (2013) Climate Change 2013: The physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 1535 pp

    Google Scholar 

  • Kang S, Xu Y, You Q, Flügel WA, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5(1):015101. https://doi.org/10.1088/1748-9326/5/1/015101

    Article  CAS  Google Scholar 

  • Kim HS, Chung YS, Tans PP, Yoon MB (2016) Climatological variability of air temperature and precipitation observed in South Korea for the last 50 years. Air Qual Atmos Health 9(6):645–651. https://doi.org/10.1007/s11869-015-0366-z

    Article  CAS  Google Scholar 

  • Kuzu SL (2018) Estimation and dispersion modeling of landing and take-off (LTO) cycle emissions from Atatürk International Airport. Air Qual Atmos Health 11:153–161. 1. https://doi.org/10.1007/s11869-017-0525-5

    Article  CAS  Google Scholar 

  • Malhi Y, & Grace J (2000). Tropical forests and atmospheric carbon dioxide. Trends in Ecology & Evolution, 15(8):332–337

  • New M, Liverman D, Schroder H, Anderson, K (2011) Four degrees and beyond: the potential for a global temperature increase of four degrees and its implications. https://doi.org/10.1098/rsta.2010.0304

  • Nicholls RJ, Brown S, Goodwin P, Wahl T, Lowe J, Solan M, Wolff C (2018) Stabilization of global temperature at 1.5° C and 2.0° C: implications for coastal areas. Phil Trans R Soc A 376(2119):20160448. https://doi.org/10.1098/rsta.2016.0448

    Article  CAS  Google Scholar 

  • Nikulin G, Lennard C, Dosio A, Kjellström E, Chen Y, Hänsler A, van Meijgaard E (2018) The effects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble. EnvironRes Lett 13(6):065003. https://doi.org/10.1088/1748-9326/aab1b1

    Article  Google Scholar 

  • Park CE, Jeong SJ, Joshi M, Osborn TJ, Ho CH, Piao S, Kim BM (2018) Keeping global warming within 1.5° C constrains emergence of aridification. Nat Clim Chang 8(1):70. https://doi.org/10.1038/s41558-017-0034-4

    Article  Google Scholar 

  • Partal T, Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrol Process 20(9):2011–2026. https://doi.org/10.1002/hyp.5993

    Article  Google Scholar 

  • Peterson TC, Gallo KP, Lawrimore J, Owen TW, Huang A, McKittrick DA (1999) Global rural temperature trends. Geophys Res Lett 26(3):329–332. https://doi.org/10.1029/1998GL900322

    Article  Google Scholar 

  • Satılmış S (2017) Aksaray’daBüyük Bir Afet: 1911 SelFelaketi. Electron Turk Stud 12(26):131–152, (in Turkish). https://doi.org/10.7827/TurkishStudies.12495

    Article  Google Scholar 

  • Seibert, P., Beyrich, F., Gryning, S.E., Joffre, S., Rasmussen, A., Tercier, P., 1998. Mixing layer depth determination for dispersion modelling. European Commission. In: Fisher, B.E.A., Erbrink, J.J., Finardi, S., Jeannet, P., Joffre, S., Morselli, M.G., Pechinger, U., Seibert, P., Thomson, D.J. (Eds.), 1998: COST Action 710-Final Report. Harmonisation of the pre-processing of meteorological data for atmospheric dispersion models. L-2985 Luxembourg: European Commission, EUR 18195 EN (ISBN 92-828-3302-X)

  • Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. https://doi.org/10.1002/jgrd.50188

    Article  Google Scholar 

  • Simpson M, Raman S, Lundquist JK, Lsach M (2007) A study of the variation of urban mixed layer heights. Atmos Environ 41:6923–6930. https://doi.org/10.1016/j.atmosenv.2006.08.029

    Article  CAS  Google Scholar 

  • Şimşek O (2013) Hatay İlinde Bazı Meteorolojik Verilerin Gidiş Analizi. SDU Int Technol Sci 5(2):132–144

    Google Scholar 

  • Tabari H, Talaee PH (2013) Moisture index for Iran: spatial and temporal analyses. Glob Planet Chang 100:11–19. https://doi.org/10.1016/j.gloplacha.2012.08.010

    Article  Google Scholar 

  • Smit, B. and Pilifosova, O. (2001) Adaptation to Climate Change in the Context of Sustainable Development and Equity. In: Working Group II: Impacts, Adaptation and Vulnerability, IPCC Assessment Report, IPCC

  • Trenberth KE (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Chang 42(1):327–339. https://doi.org/10.1023/A:1005488920935

    Article  Google Scholar 

  • US EPA (2004) User’s guide for the AERMOD meteorological preprocessor (AERMET), EPA-454/B-03-002, September 2004, North Carolina, USA

  • Venkatram A (1980) Estimating the Monin-Obukhov length in the stable boundary layer for dispersion calculations. Bound-Layer Meteor 19:481–485 https://doi.org/OOOS-8314/80/0194-0481$00.75

    Article  Google Scholar 

  • Yayvan, MÇelik S, Ersoy S (2008) Aksaray İklimi ve Küresel Isınma, MGM(web-site) https://www.mgm.gov.tr/FILES/genel/makale/aksaray-iklimi.pdf. Accessed 04 April 2019 (in Turkish)

  • Yulaeva E, Wallace JM (1994) The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J Clim 7(11):1719–1736. https://doi.org/10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge Turkish State Meteorological Service for providing the extensive data set of Aksaray weather records.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Levent Kuzu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzu, S.L., Cetinkaya, A.Y. Climatological evaluation in a Central Anatolian city and indirect effects of climatological variation on air quality. Air Qual Atmos Health 12, 847–854 (2019). https://doi.org/10.1007/s11869-019-00703-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-019-00703-x

Keywords

Navigation