Skip to main content
Log in

Characteristics of PM2.5 and its chemical constituents in Beijing, Seoul, and Nagasaki

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Ambient fine particulate matter (PM2.5) samples were collected from September 2013 to May 2015 in three cities in East Asian countries (Beijing, China; Seoul, South Korea; and Nagasaki, Japan) in order to analyze the spatiotemporal trends of PM2.5 chemical constituents including organic matter (OM), elemental carbon (EC), water-soluble inorganic ions (NO3, SO42−, and NH4+), and trace elements. The average PM2.5 mass concentration were 125 ± 6.80 μg m−3, 44.6 ± 0.84 μg m−3, and 17.4 ± 0.37 μg m−3 in Beijing, Seoul, and Nagasaki, respectively. Higher carbonaceous concentrations were observed during winter in Beijing and Seoul, while higher concentrations were found during spring in Nagasaki. The highest seasonal averages of organic carbon (OC) to EC ratios were found during spring in Beijing, winter in Seoul, and fall in Nagasaki. The concentrations of secondary OC and its ratio to OC were high during fall and winter. For ion species, NO3 was dominant in Beijing and Seoul, while SO42− was dominant in Nagasaki. Increased contributions of mobile sources in Beijing and Seoul were observed, with higher NO3/SO42− ratios than those in Nagasaki. Three groups of air masses were found for the three cities using cluster analyses based on 72-h backward trajectories. The cluster from the Bohai economic zone had the highest concentration of PM2.5 for Beijing. For Seoul, a cluster that originated from the Yellow Sea near an industrial area in Liaoning Province and passed through a highly polluted industrial area in southwestern Seoul had high PM2.5 concentrations. A long-range transported cluster that originated in and crossed through heavily industrialized areas in China and South Korea for Nagasaki had higher ion species concentrations. The results of this study are useful to identify the current levels of PM2.5 and its chemical properties to establish a control plan for PM2.5 for Northeast Asia, including China, South Korea, and Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anenberg SC, West JJ, Yu H, Chin M, Schulz M, Bergmann D, Bey I, Bian H, Diehl T, Fiore A, Hess P, Marmer E, Montanaro V, Park R, Shindell D, Takemura T, Dentener F (2014) Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality. Air Qual Atmos Health 7:369–379. https://doi.org/10.1007/s11869-014-0248-9

    Article  CAS  Google Scholar 

  • Cao J, Wu F, Chow J, Lee S, Li Y, Chen S, An Z, Fung K, Watson J, Zhu C (2005) Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmos Chem Phys 5:3127–3137

    Article  CAS  Google Scholar 

  • Cao G, Zhang X, Gong S, An X, Wang Y (2011) Emission inventories of primary particles and pollutant gases for China. Chin Sci Bull 56:781–788. https://doi.org/10.1007/s11434-011-4373-7

    Article  CAS  Google Scholar 

  • Chan CK, Yao X (2008) Air pollution in mega cities in China. Atmospheric Environment 42:1-42. DOI: https://doi.org/10.1016/j.atmosenv.2007.09.003

    Article  CAS  Google Scholar 

  • Choi Jk, Heo JB, Ban SJ, Yi SM, Zoh KD (2013) Source apportionment of PM2. 5 at the coastal area in Korea. Sci Total Environ 447:370–380

    Article  CAS  Google Scholar 

  • Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BGJ, Speizer FE (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759. https://doi.org/10.1056/nejm199312093292401

    Article  CAS  Google Scholar 

  • Draxler R (2010) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website. http://ready.arl.noaa.gov/HYSPLIT.php

  • Gao X, Yang L, Cheng S, Gao R, Zhou Y, Xue L, Shou Y, Wang J, Wang X, Nie W, Xu P, Wang W (2011) Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China: temporal variations and source apportionments. Atmos Environ 45:6048–6056. https://doi.org/10.1016/j.atmosenv.2011.07.041

    Article  CAS  Google Scholar 

  • Gao J, Tian H, Cheng K, Lu L, Zheng M, Wang S, Hao J, Wang K, Hua S, Zhu C (2015) The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China. Atmos Environ 107:1–8

    Article  CAS  Google Scholar 

  • Gu J, Bai Z, Liu A, Wu L, Xie Y, Li W, Dong H, Zhang X (2010) Characterization of atmospheric organic carbon and element carbon of PM2.5 and PM10 at Tianjin, China. Aerosol Air Qual Res 10:167–176. https://doi.org/10.4209/aaqr.2009.12.0080

    Article  CAS  Google Scholar 

  • Han YJ, Kim SR, Jung JH (2011) Long-term measurements of atmospheric PM2.5 and its chemical composition in rural Korea. J Atmos Chem 68:281–298. https://doi.org/10.1007/s10874-012-9225-6

    Article  CAS  Google Scholar 

  • Hayakawa K (2016) Environmental behaviors and toxicities of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons. Chem Pharm Bull 64:83–94

    Article  CAS  Google Scholar 

  • He Z, Kim YJ, Ogunjobi KO, Hong CS (2003) Characteristics of PM2.5 species and long-range transport of air masses at Taean background station, South Korea. Atmos Environ 37:219–230. https://doi.org/10.1016/S1352-2310(02)00834-8

    Article  CAS  Google Scholar 

  • Hua Y, Cheng Z, Wang S, Jiang J, Chen D, Cai S, Fu X, Fu Q, Chen C, Xu B (2015) Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China. Atmos Environ 123:380–391

    Article  CAS  Google Scholar 

  • Jimenez JL, Canagaratna M, Donahue N, Prevot A, Zhang Q, Kroll JH, DeCarlo PF, Allan JD, Coe H, Ng N (2009) Evolution of organic aerosols in the atmosphere. Science 326:1525–1529

    Article  CAS  Google Scholar 

  • Kaneyasu N, Yamamoto S, Sato K, Takami A, Hayashi M, Hara K, Kawamoto K, Okuda T, Hatakeyama S (2014) Impact of long-range transport of aerosols on the PM2.5 composition at a major metropolitan area in the northern Kyushu area of Japan. Atmos Environ 97:416–425. https://doi.org/10.1016/j.atmosenv.2014.01.029

    Article  CAS  Google Scholar 

  • Kim YJ, Kim KW, Kim SD, Lee BK, Han JS (2006) Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon. Atmos Environ 40(Supplement 2):593–605. https://doi.org/10.1016/j.atmosenv.2005.11.076

    Article  CAS  Google Scholar 

  • Kim HS, Huh JB, Hopke PK, Holsen TM, Yi SM (2007) Characteristics of the major chemical constituents of PM 2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmos Environ 41:6762–6770

    Article  CAS  Google Scholar 

  • Kong S, Han B, Bai Z, Chen L, Shi J, Xu Z (2010) Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China. Sci Total Environ 408:4681–4694. https://doi.org/10.1016/j.scitotenv.2010.06.005

    Article  CAS  Google Scholar 

  • Lim HJ, Turpin BJ (2002) Origins of primary and secondary organic aerosol in Atlanta: results of time-resolved measurements during the Atlanta supersite experiment. Environ Sci Technol 36:4489–4496. https://doi.org/10.1021/es0206487

    Article  Google Scholar 

  • Lin P, Hu M, Deng Z, Slanina J, Han S, Kondo Y, Takegawa N, Miyazaki Y, Zhao Y, Sugimoto N (2009) Seasonal and diurnal variations of organic carbon in PM2.5 in Beijing and the estimation of secondary organic carbon. J Geophys Res-Atmos 114:n/a-n/a. DOI: https://doi.org/10.1029/2008JD010902

  • Perrone MG, Larsen BR, Ferrero L, Sangiorgi G, De Gennaro G, Udisti R, Zangrando R, Gambaro A, Bolzacchini E (2012) Sources of high PM2.5 concentrations in Milan, Northern Italy: molecular marker data and CMB modelling. Sci Total Environ 414:343–355. https://doi.org/10.1016/j.scitotenv.2011.11.026

    Article  CAS  Google Scholar 

  • Saylor RD, Edgerton ES, Hartsell BE (2006) Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation. Atmos Environ 40:7546–7556. https://doi.org/10.1016/j.atmosenv.2006.07.018

    Article  CAS  Google Scholar 

  • Schwartz J, Slater D, Larson TV, Pierson WE, Koenig JQ (1993) Particulate air pollution and hospital emergency room visits for asthma in Seattle. Am Rev Respir Dis 147:826–831

    Article  CAS  Google Scholar 

  • Seinfeld J, Pandis S (1998) Atmospheric physics and chemistry. From air pollution to climate change, John Wiley & Sons

  • Shimada K, Takami A, Kato S, Kajii Y, Hasegawa S, Fushimi A, Shimizu A, Sugimoto N, Chan C, Kim Y (2016) Characteristics of carbonaceous aerosols in large-scale Asian wintertime outflows at Cape Hedo, Okinawa, Japan. J Aerosol Sci 100:97–107

    Article  CAS  Google Scholar 

  • Snyder DC, Rutter AP, Collins R, Worley C, Schauer JJ (2009) Insights into the origin of water soluble organic carbon in atmospheric fine particulate matter. Aerosol Sci Technol 43:1099–1107

    Article  CAS  Google Scholar 

  • Son JY, Lee JT, Kim KH, Jung K, Bell ML (2012) Characterization of fine particulate matter and associations between particulate chemical constituents and mortality in Seoul, Korea. Environ Health Perspect 120:872–878. https://doi.org/10.1289/ehp.1104316

    Article  CAS  Google Scholar 

  • Srinivas B, Sarin MM (2014) PM2.5, EC and OC in atmospheric outflow from the Indo-Gangetic Plain: temporal variability and aerosol organic carbon-to-organic mass conversion factor. Sci Total Environ 487:196–205. https://doi.org/10.1016/j.scitotenv.2014.04.002

    Article  CAS  Google Scholar 

  • Stein A, Draxler RR, Rolph GD, Stunder BJ, Cohen M, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077

    Article  Google Scholar 

  • Stohl A, Eckhardt S, Forster C, James P, Spichtinger N, Seibert P (2002) A replacement for simple back trajectory calculations in the interpretation of atmospheric trace substance measurements. Atmos Environ 36:4635–4648

    Article  CAS  Google Scholar 

  • Sun Y, Zhuang G, Wang Y, Han L, Guo J, Dan M, Zhang W, Wang Z, Hao Z (2004) The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources. Atmos Environ 38:5991–6004. https://doi.org/10.1016/j.atmosenv.2004.07.009

    Article  CAS  Google Scholar 

  • Tan J, Duan J, He K, Ma Y, Duan F, Chen Y, Fu J (2009) Chemical characteristics of PM2.5 during a typical haze episode in Guangzhou. J Environ Sci 21:774–781

    Article  CAS  Google Scholar 

  • Wang J, Ogawa S (2015) Effects of meteorological conditions on PM(2.5) concentrations in Nagasaki, Japan. Int J Environ Res Public Health 12:9089–9101. https://doi.org/10.3390/ijerph120809089

    Article  CAS  Google Scholar 

  • Wang Y, Zhuang G, Tang A, Yuan H, Sun Y, Chen S, Zheng A (2005) The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos Environ 39:3771–3784

    Article  CAS  Google Scholar 

  • Wang H, Xu J, Zhang M, Yang Y, Shen X, Wang Y, Chen D, Guo J (2014) A study of the meteorological causes of a prolonged and severe haze episode in January 2013 over central-eastern China. Atmos Environ 98:146–157

    Article  CAS  Google Scholar 

  • Winberry W Jr, Ellestad T, Stevens R (1999) Compendium method for the determination of inorganic compounds in ambient air: compendium method IO-4.2: determination of reactive acidic and basic gases and strong acidity of atmospheric fine particles (< 2.5 um), EPA/625/R-96/010a. US Environmental Protection Agency, Cincinnati, OH

  • Xie Y, Dai H, Dong H, Hanaoka T, Masui T (2016) Economic impacts from PM2.5 pollution-related health effects in China: a provincial-level analysis. Environ Sci Technol 50:4836–4843. https://doi.org/10.1021/acs.est.5b05576

    Article  CAS  Google Scholar 

  • Xing L, Fu TM, Cao J, Lee S, Wang G, Ho K, Cheng MC, You CF, Wang T (2013) Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols. Atmos Chem Phys 13:4307–4318

    Article  Google Scholar 

  • Xu H, Cao J, Chow JC, Huang RJ, Shen Z, Chen LWA, Ho KF, Watson JG (2016) Inter-annual variability of wintertime PM2.5 chemical composition in Xi’an, China: evidences of changing source emissions. Sci Total Environ:545-546–546-555. https://doi.org/10.1016/j.scitotenv.2015.12.070

    Article  CAS  Google Scholar 

  • Zhang Q, Streets DG, Carmichael GR, He KB, Huo H, Kannari A, Klimont Z, Park IS, Reddy S, Fu JS, Chen D, Duan L, Lei Y, Wang LT, Yao ZL (2009) Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys 9:5131–5153. https://doi.org/10.5194/acp-9-5131-2009

    Article  CAS  Google Scholar 

  • Zhang F, Zhao J, Chen J, Xu Y, Xu L (2011) Pollution characteristics of organic and elemental carbon in PM2. 5 in Xiamen, China. J Environ Sci 23:1342–1349

    Article  Google Scholar 

  • Zhang Q, Shen Z, Cao J, Zhang R, Zhang L, Huang RJ, Zheng C, Wang L, Liu S, Xu H (2015) Variations in PM2. 5, TSP, BC, and trace gases (NO2, SO2, and O3) between haze and non-haze episodes in winter over Xi'an, China. Atmos Environ 112:64–71

  • Zhang Q, Jiang X, Tong D, Davis SJ, Zhao H, Geng G, Feng T, Zheng B, Lu Z, Streets DG, Ni R, Brauer M, van Donkelaar A, Martin RV, Huo H, Liu Z, Pan D, Kan H, Yan Y, Lin J, He K, Guan D (2017a) Transboundary health impacts of transported global air pollution and international trade. Nature 543:705–709. https://doi.org/10.1038/nature21712

    Article  CAS  Google Scholar 

  • Zhang Y, Wei J, Tang A, Zheng A, Shao Z, Liu X (2017b) Chemical characteristics of PM2. 5 during 2015 spring festival in Beijing, China. Aerosol Air Qual Res 17:1169–1180

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang H, Deng J, Du W, Hong Y, Xu L, Qiu Y, Hong Z, Wu X, Ma Q, Yao J, Chen J (2017c) Source regions and transport pathways of PM2.5 at a regional background site in East China. Atmos Environ 167:202–211. https://doi.org/10.1016/j.atmosenv.2017.08.031

    Article  CAS  Google Scholar 

  • Zhao P, Dong F, He D, Zhao X, Zhang X, Zhang W, Yao Q, Liu H (2013) Characteristics of concentrations and chemical compositions for PM 2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmos Chem Phys 13:4631–4644

    Article  Google Scholar 

  • Zhao M, Huang Z, Qiao T, Zhang Y, Xiu G, Yu J (2015) Chemical characterization, the transport pathways and potential sources of PM2.5 in Shanghai: seasonal variations. Atmos Res 158-159:66–78. https://doi.org/10.1016/j.atmosres.2015.02.003

    Article  CAS  Google Scholar 

  • Zhou J, Xing Z, Deng J, Du K (2016) Characterizing and sourcing ambient PM2.5 over key emission regions in China I: water-soluble ions and carbonaceous fractions. Atmos Environ 135:20–30. https://doi.org/10.1016/j.atmosenv.2016.03.054

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Global Research Lab (#K21004000001-10A0500-00710) and the Basic Science Research Program (2014R1A2A2A04007801) through the National Research Foundation of Korea (NRF) which is funded by the Ministry of Science, ICT (Information and Communication Technologies).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jongbae Heo or Seung-Muk Yi.

Electronic supplementary material

ESM 1

(DOCX 2253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, E.H., Heo, J., Hirakura, S. et al. Characteristics of PM2.5 and its chemical constituents in Beijing, Seoul, and Nagasaki. Air Qual Atmos Health 11, 1167–1178 (2018). https://doi.org/10.1007/s11869-018-0616-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-018-0616-y

Keywords

Navigation