Skip to main content

Advertisement

Log in

Space-time mapping of ground-level PM2.5 and NO2 concentrations in heavily polluted northern China during winter using the Bayesian maximum entropy technique with satellite data

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

The accurate and informative space-time mapping of air pollutants is a crucial component of many human exposure studies. In the present work, space-time maps of daily distributions of PM2.5 and NO2 concentrations were generated in the severely polluted northern China region using the Bayesian maximum entropy (BME) method. This method can incorporate hard PM2.5 and NO2 data (obtained at ground-level monitoring sites), and various kinds of soft (uncertain) data, including satellite data processed in terms of machine learning techniques, meteorological variables, and geographical predictors. The BME maps of space-time PM2.5 and NO2 concentrations over northern China generated during the winter season (when severe haze episodes occur frequently) were realistic and informative. As regards their numerical accuracy, for the space-time PM2.5 estimates, the tenfold cross-validation R 2 and the RMSE were, respectively, 0.86 and 14.37 μg/m3; for the space-time NO2 estimates, the R 2 and RMSE values were, respectively, 0.85 and 6.93 μg/m3. Lastly, it was shown that the BME method performed better than the mainstream spatiotemporal ordinary kriging technique in terms of the higher R 2 values of both the predicted PM2.5 and NO2 concentration maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Apte JS, Marshall JD, Cohen AJ, Brauer M (2015) Addressing global mortality from ambient PM2.5. Environ Sci Technol 49:8057–8066

    Article  CAS  Google Scholar 

  • Bechle MJ, Millet DB, Marshall JD (2015) National spatiotemporal exposure surface for NO2: monthly scaling of a satellite-derived land-use regression, 2000–2010. Environ Sci Technol 49:12297–12305

    Article  CAS  Google Scholar 

  • Center for International Earth Science Information Network - CIESIN - Columbia University (2015) Gridded population of the world, version 4 (gpwv4): population count. NASA Socioeconomic Data and Applications Center (SEDAC), Palisades

    Google Scholar 

  • Christakos G (1990) A Bayesian maximum-entropy view to the spatial estimation problem. Math Geol 22:763–777

    Article  Google Scholar 

  • Christakos G (1992) Random field models in earth sciences. Academic Press, San Diego. New Edition (2005), Dover Publ. Inc., Mineola, NY

  • Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, New York

    Google Scholar 

  • Christakos G (2017) Spatiotemporal random fields: theory and applications. Elsevier, Cambridge

    Book  Google Scholar 

  • Christakos G, Hristopulos DT (1996) Characterization of atmospheric pollution using stochastic indicators. Atmos Environ 30(22):3811–3823

    Article  CAS  Google Scholar 

  • Christakos G, Hristopulos DT (1998) Spatiotemporal environmental health modelling: a tractatus stochasticus. Kluwer Academic Publ, Boston

    Book  Google Scholar 

  • Christakos G, Serre ML (2000) BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmos Environ 34(20):3393–3406

    Article  CAS  Google Scholar 

  • Christakos G, Serre ML, Kovitz J (2001) BME representation of particulate matter distributions in the state of California on the basis of uncertain measurements. J Geophys Res 106(D9):9717–9731

    Article  Google Scholar 

  • Di Q, Kloog I, Koutrakis P, Lyapustin A, Wang YJ, Schwartz J (2016) Assessing PM2.5 exposures with high spatiotemporal resolution across the continental united states. Environ Sci Technol 50:4712–4721

    Article  CAS  Google Scholar 

  • Du Y, Li T (2016) Assessment of health-based economic costs linked to fine particulate (PM2.5) pollution: a case study of haze during January 2013 in Beijing, China. Air Qual Atmos Health 9(4):439–445

    Article  CAS  Google Scholar 

  • Engel-Cox JA, Holloman CH, Coutant BW, Hoff RM (2004) Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos Environ 38:2495–2509

    Article  CAS  Google Scholar 

  • He J, Kolovos A (2017) Bayesian maximum entropy approach and its applications: a review. Stoch Env Res Risk A 6:1–19

  • Hu X, Belle JH, Xia M, Wildani A, Waller L, Strickland M, Liu Y (2017) Estimating PM2.5 concentration in the conterminous United States using the random forest approach. Environ Sci Technol 51(12):6936–6944

    Article  CAS  Google Scholar 

  • Kenagy HS, Lin C, Wu H, Heal MR (2016) Greater nitrogen dioxide concentrations at child versus adult breathing heights close to urban main road kerbside. Air Qual Atmos Health 9(6):1–7

    Article  Google Scholar 

  • Kloog I, Nordio F, Coull BA, Schwartz J (2012) Incoporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the mid-atlantic states. Environ Sci Technol 46:11913–11921

    Article  CAS  Google Scholar 

  • Kuhn M (2008) Building predictive models in r using the caret package. J Stat Softw 28:1–26

    Article  Google Scholar 

  • Lee HJ, Koutrakis P (2014) Daily ambient NO2 concentration predictions using satellite ozone monitoring instrument NO2 data and land use regression. Environ Sci Technol 48:2305–2311

    CAS  Google Scholar 

  • Li TW, Shen HF, Zeng C, Yuan QQ, Zhang LP (2017) Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in china: methods and assessment. Atmos Environ 152:477–489

    Article  CAS  Google Scholar 

  • Liu Y, Franklin M, Kahn R, Koutrakis P (2007) Using aerosol optical thickness to predict ground-level PM2.5 Concentrations in the st. Louis area: a comparison between misr and modis. Remote Sens Environ 107:33–44

    Article  Google Scholar 

  • Liu Y, Paciorek CJ, Koutrakis P (2009) Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environ Health Perspect 117:886–892

    Article  Google Scholar 

  • Ma ZW, Hu XF, Huang L, Bi J, Liu Y (2014) Estimating ground-level PM2.5 In china using satellite remote sensing. Environ Sci Technol 48:7436–7444

    Article  CAS  Google Scholar 

  • Qin SS, Liu F, Wang C, Song YL, Qu JS (2015) Spatial-temporal analysis and projection of extreme particulate matter (PM10 and PM2.5) levels using association rules: a case study of the Jingjinji region, China. Atmos Environ 120:339–350

    Article  CAS  Google Scholar 

  • Reid CE, Jerrett M, Petersen ML, Pfister GG, Morefield PE, Tager IB, Raffuse SM, Balmes JR (2015) Spatiotemporal prediction of fine particulate matter during the 2008 northern California wildfires using machine learning. Environ Sci Technol 49:3887–3896

    Article  CAS  Google Scholar 

  • Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV et al (2005) The modis aerosol algorithm, products, and validation. J Atmos Sci 62(4):947–973

  • Song WZ, Jia HF, Huang JF, Zhang YY (2014) A satellite-based geographically weighted regression model for regional PM2.5 estimation over the pearl river delta region in china. Remote Sens Environ 154:1–7

    Article  Google Scholar 

  • Song CB, He JJ, Wu L, Jin TS, Chen X, Li RP, Ren PP, Zhang L, Mao HJ (2017) Health burden attributable to ambient PM2.5 in China. Environ Pollut 223:575–586

    Article  CAS  Google Scholar 

  • Weichenthal SA, Godri-Pollitt K, Villeneuve PJ (2013) PM2.5, oxidant defence and cardiorespiratory health: a review. Environ Health 12(1):1–8

  • Wu J, Yao F, Li W, Si M (2016) Viirs-based remote sensing estimation of ground-level pm2.5 concentrations in Beijing–Tianjin–Hebei: a spatiotemporal statistical model. Remote Sens Environ 184:316–328

    Article  Google Scholar 

  • Xie YY, Wang YX, Zhang K, Dong WH, Lv BL, Bai YQ (2015) Daily estimation of ground-level pm2.5 concentrations over Beijing using 3 km resolution MODIS AOD. Environ Sci Technol 49:12280–12288

    Article  CAS  Google Scholar 

  • Yang Y, Christakos G (2015) Spatiotemporal characterization of ambient PM2.5 concentrations in Shandong province (China). Environ Sci Technol 49:13431–13438

    Article  CAS  Google Scholar 

  • Yu HL, Kolovos A, Christakos G, Chen JC, Warmerdam S, Dev B (2007) Interactive spatiotemporal modelling of health systems: the SEKS-GUI framework. Stoch Env Res Risk A 21:555–572

    Article  Google Scholar 

  • Yu H-L, Chen J-C, Christakos G, Jerrett M (2009) BME estimation of residential exposure to ambient PM10 and ozone at multiple time-scales. Environ Health Perspect 117:537–544

    Article  CAS  Google Scholar 

  • Zhan Y, Luo YZ, Deng XF, Chen HJ, Grieneisen ML, Shen XY, Zhu LZ, Zhang MH (2017) Spatiotemporal prediction of continuous daily PM2.5 concentrations across china using a spatially explicit machine learning algorithm. Atmos Environ 155:129–139

    Article  CAS  Google Scholar 

  • Zheng YX, Zhang Q, Liu Y, Geng GN, He KB (2016) Estimating ground-level PM2.5 concentrations over three megalopolises in china using satellite-derived aerosol optical depth measurements. Atmos Environ 124:232–242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge with appreciation the valuable comments made by the three referees. This research was supported by a grant from the National Science Foundation of China (Grant No. NSFC 41671399).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Christakos.

Electronic supplementary material

ESM 1

(DOC 2326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Christakos, G. Space-time mapping of ground-level PM2.5 and NO2 concentrations in heavily polluted northern China during winter using the Bayesian maximum entropy technique with satellite data. Air Qual Atmos Health 11, 23–33 (2018). https://doi.org/10.1007/s11869-017-0514-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-017-0514-8

Keywords

Navigation