Skip to main content
Log in

Screening of the EMEP source receptor relationships: application to five European countries

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

In this work, a methodology based on the calculation of potencies and potentials is used to screen modeled emission reduction scenarios performed with the European Monitoring and Evaluation Programme/Meteorological Synthesizing Centre-West (EMEP/MSC-W) air quality model. Specific indicators are proposed to look at the results in terms of model processes (potencies) as well as in terms of their impacts on policy (potentials). A specific template to screen the results is also developed and applied. The EMEP/MSC-W model results obtained for 5 EU countries for 5 precursors and 2 levels of emission reductions (15 and 40 %) are analyzed with the following purposes: (i) build confidence in the processes implemented in the model, (ii) identify potential for national abatement versus trans-boundary transport, (iii) assess the relative importance of various precursor emissions, and (iv) estimate the importance of non-linearity with respect to the level of emission reduction chosen and among the precursor emissions. The proposed methodology proves to be very useful for comparing the responses across countries and precursors in a uniform way. The results confirm our knowledge in terms of processes implemented in the EMEP/MSC-W model. The validity of the linear assumption made during the derivation of the EMEP-based source receptor relationships is generally valid although minor non-linearities with respect to NH3 (all countries) and NOx (in Italy) are observed. Because no true reference can be used to assess the quality of the model results in scenario mode, it is important to consider this screening as a benchmark to which other models or updated versions of the EMEP/MSC-W model can be compared to in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://fairmode.jrc.ec.europa.eu/

References

  • Aas W, Tsyro S, Bieber E, Bergstrom R, Ceburnis D, Ellermann T, Fagerli H, Frolich M, Gehrig R, Makkonen U, Nemitz E, Otjes R, Perez N, Perrino C, Prevot A, Putaud JP, Simpson D, Spindler G, Vana M, Yttri KE (2012) Lessons learnt from the first EMEP intensive measurement periods. Atmos Chem Phys Discuss 12:3731–3780

    Article  Google Scholar 

  • Amann M, Bertok I, Borken-Kleefeld J, Cofala J, Heyes C, Höglund-Isaksson L, Klimont Z, Nguyen B, Posch M, Rafaj P, Sandler R, Schöpp W, Wagner F, Winiwarter W (2011) Cost-effective control of air quality and greenhouse gases in Europe: modelling and policy applications. Environ Model Softw 26:1489–1501

    Article  Google Scholar 

  • AQD (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe ( No. 152), Official Journal

  • Banzhaf S, Schaap M, Kranenburg R, Manders AM, Segers AJ, Visschedijk AJ, Denier van der Gon HA, Kuenen JJ, van Meijgaard E, van Ulft LH, Cofala J, Builtjes PJ (2015) Dynamic model evaluation for secondary inorganic aerosol and its precursors over Europe between 1990 and 2009. Geosci Model Dev 8(4):1047–1070

    Article  CAS  Google Scholar 

  • Bessagnet B, Beauchamp M, Guerreiro C, de Leeuw F, Tsyro S, Colette A, Meleux F, Rouïl L, Ruyssenaars P, Sauter F, Velders G, Foltescu V, van Aardenne J (2014) Can further mitigation of ammonia emissions reduce exceedances of particulate matter air quality standards? Environ Sci Pol 44:143–163

    Article  Google Scholar 

  • Colette A, Granier C, Hodnebrog Ø, Jakobs MA, Nyiri A, Bessagnet B, D'Angiola A, D'Isidoro M, Gauss M, Meleux F, Memmesheimer M, Mieville A, Rouil L, Russo F, Solberg S, Stordal F, Tampieri F (2011) Air quality trends in Europe over the past decade: a first multi-model assessment. Atmos Chem Phys 11(22):11657–11678

    Article  CAS  Google Scholar 

  • Cuvelier C, Thunis P, Vautard R, Amann M, Bessagnet B, Bedogni M, Berkowicz R, Brandt J, Brocheton F, Builtjes P, Carnavale C, Coppalle A, Denby B, Douros J, Graf A, Hellmuth O, Hodzic A, Honore C, Jonson J, Kerschbaumer A, de Leeuw F, Minguzzi E, Moussiopoulos N, Pertot C, Peuch VH, Pirovano G, Rouil L, Sauter F, Schaap M, Stern R, Tarrason L, Vignati E, Volta M, White L, Wind P, Zuber A (2007) CityDelta: a model intercomparison study to explore the impact of emission reductions in European cities in 2010. Atmos Environ 41:189–207

    Article  CAS  Google Scholar 

  • Dennis R, Fox T, Fuentes M, Gilliland A, Hanna S, Hogrefe C, Irwin J, Rao ST, Scheffe R, Schere K, Steyn D, Venkatram A (2010) A framework for evaluating regional scale numerical photochemical modeling systems. Environ Fluid Mech 10:471–489

    Article  Google Scholar 

  • EEA (2011) The application of models under the European Union’s Air Quality Directive: a technical reference guide. Technical report No 10/2011

  • EMEP (2013) Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components, EMEP status report 1/2013

  • EMEP (2014) Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components, EMEP status report 1/2014

  • EMEP (2015a) Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components, EMEP status report 1/2015

  • EMEP (2015b) Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components, Supplementary material, EMEP status report 1/2015

  • Fagerli H, Aas W (2008) Trends of nitrogen in air and precipitation: model results and observations at EMEP sites in Europe, 1980-2003. Environ Pollut 154(3):448–461

    Article  CAS  Google Scholar 

  • Fagerli H, Legrand M, Preunkert S, Vestreng V, Simpson D, Cerquira M (2007) Modeling historical long-term trends of sulfate, ammonium and elemental carbon over Europe: a comparison with ice core records in the Alps. J Geophys Res. doi:10.1029/2006JD008044

    Google Scholar 

  • Fiore A, Dentener F, Wild O, Cuvelier C et al (2009) Multi-model estimates of intercontinental source-receptor relationships for ozone pollution. J Geophys Res. doi:10.1029/2008JD010816

    Google Scholar 

  • Huijnen V, Eskes HJ, Poupkou A, Elbern H et al (2010) Comparison of OMI NO2 tropospheric columns with an ensemble of global and European regional air quality models. Atmos Chem Phys 10:3273–3296

    Article  CAS  Google Scholar 

  • Jonson JE, Simpson D, Fagerli H, Solberg S (2006) Can we explain the trends in European ozone levels? Atmos Chem Phys 6:51–66

    Article  CAS  Google Scholar 

  • Jonson JE, Stohl A, Am F et al (2010) A multi-model analysis of vertical ozone profiles. Atmos Chem Phys 10:5759–5783

    Article  CAS  Google Scholar 

  • Langner J, Engardt M, Baklanov A, Christensen JH, Gauss M, Geels C, Hedegaard GB, Nuterman R, Simpson D, Soares J, Sofiev M, Wind P, Zakey A (2012) A multi-model study of impacts of climate change on surface ozone in Europe. Atmos Chem Phys 12:10423–10440

    Article  CAS  Google Scholar 

  • Simpson D, Benedictow A, Berge H, Bergström R et al (2012) The EMEP MSC-W chemical transport model—technical description. Atmos Chem Phys 12(16):7825–7865

    Article  CAS  Google Scholar 

  • Thunis P, Clappier A (2014) Indicators to support the dynamic evaluation of air quality models. Atmos Environ 98:402–409

    Article  CAS  Google Scholar 

  • Thunis P, Cuvelier C, Roberts P et al (2008) EuroDelta-II, evaluation of a sectorial approach to integrated assessment modelling including the Mediterranean Sea. JRC Scientific and Technical Reports –EUR 23444 EN

  • Thunis P, Clappier A, Pisoni E, Degraeuwe B (2015a) Quantification of non-linearities as a function of time averaging in regional air quality modeling applications. Atmos Environ 103:263–275

    Article  CAS  Google Scholar 

  • Thunis P, Pisoni E, Degraeuwe B, Kranenburg R, Schaap M, Clappier A (2015b) Dynamic evaluation of air quality models over European regions. Atmos Environ 111:185–194

    Article  CAS  Google Scholar 

  • Van loon M, Wind P, Tarrason L (2005) Meteorological variability in source allocation. In: Transboundary contributions across Europe, EMEP Status report 1/2005, chapter 6

  • Wiedinmyer C, Akagi SK, Yokelson RJ, Emmons LK, Al-Saadi JA, Orlando JJ, Soja J (2011) The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci Model Dev 4:625–641

    Article  Google Scholar 

  • Wind P, Simpson D, Tarrason L (2004) Source-receptor calculations. In: EMEP Status report 1/2004, chapter 4

Download references

Acknowledgments

The EMEP/MSC-W source receptor calculations made available for this work have been funded by the Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air pollutants in Europe (EMEP) under UNECE.

This work has also received support from the Research Council of Norway (Programme for Supercomputing) through CPU time granted at the super computers at NTNU in Trondheim, the University of Tromsø, and the University of Bergen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Clappier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clappier, A., Fagerli, H. & Thunis, P. Screening of the EMEP source receptor relationships: application to five European countries. Air Qual Atmos Health 10, 497–507 (2017). https://doi.org/10.1007/s11869-016-0443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-016-0443-y

Keywords

Navigation