Skip to main content

Advertisement

Log in

The Role of Circulating Tumor DNA in Renal Cell Carcinoma

  • Genitourinary Cancers (N Agarwal, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Next-generation sequencing (NGS) of circulating tumor DNA (ctDNA) is a novel technology that can complement tumor tissue NGS and has the potential to influence diagnosis and treatment of both localized and metastatic renal cell carcinoma (mRCC). ctDNA NGS is an attractive alternative to tumor tissue NGS because it circumvents the need for repeated, invasive tissue biopsies while providing a contemporary mutational profile of a patient’s tumors. While the role of ctDNA NGS in non-small cell lung cancer and colorectal cancer is well established, studies of ctDNA NGS in mRCC are only hypothesis-generating to date. In the localized RCC setting, ctDNA has demonstrated potential as a surveillance biomarker for disease recurrence. Earlier detection of mRCC, prior to the onset of symptoms, may lead to improved clinical outcomes. NGS of ctDNA in mRCC is even more promising in patients with metastatic disease. The majority of patients with mRCC have detectable ctDNA. Thus, ctDNA could be used to select patients for biomarker-guided clinical trials, such as savolitinib in MET-positive papillary RCC. Furthermore, studies have shown that the mutational profile of mRCC in ctDNA evolves after treatment progression. The most exciting potential role for ctDNA in mRCC is as a predictive biomarker for response to immunotherapy. Studies have shown that tumor mutational burden (TMB) is predictive of response to immune checkpoint inhibitors, and hypermutated ctDNA can act as a surrogate biomarker for TMB and response to immunotherapy. While studies of ctDNA in RCC are still in their infancy, there are many promising roles for ctDNA in localized and metastatic RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet (London, England). 2007;370(9605):210–1. https://doi.org/10.1016/s0140-6736(07)61904-7.

    Article  Google Scholar 

  2. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356(2):125–34. https://doi.org/10.1056/NEJMoa060655.

    Article  CAS  PubMed  Google Scholar 

  3. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24. https://doi.org/10.1056/NEJMoa065044.

    Article  CAS  PubMed  Google Scholar 

  4. Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol: Off J Am Soc Clin Oncol. 2010;28(6):1061–8. https://doi.org/10.1200/jco.2009.23.9764.

    Article  CAS  Google Scholar 

  5. Motzer RJ, Hutson TE, Cella D, Reeves J, Hawkins R, Guo J, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med. 2013;369(8):722–31. https://doi.org/10.1056/NEJMoa1303989.

    Article  CAS  PubMed  Google Scholar 

  6. Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet (London, England). 2011;378(9807):1931–9. https://doi.org/10.1016/s0140-6736(11)61613-9.

    Article  CAS  Google Scholar 

  7. Motzer RJ, Hutson TE, Ren M, Dutcus C, Larkin J. Independent assessment of lenvatinib plus everolimus in patients with metastatic renal cell carcinoma. Lancet Oncol. 2016;17(1):e4–5. https://doi.org/10.1016/s1470-2045(15)00543-4.

    Article  PubMed  Google Scholar 

  8. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356(22):2271–81. https://doi.org/10.1056/NEJMoa066838.

    Article  CAS  PubMed  Google Scholar 

  9. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet (London, England). 2008;372(9637):449–56. https://doi.org/10.1016/s0140-6736(08)61039-9.

    Article  CAS  Google Scholar 

  10. Choueiri TK, Escudier B, Powles T, Mainwaring PN, Rini BI, Donskov F, et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1814–23. https://doi.org/10.1056/NEJMoa1510016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Motzer RJ, Escudier B, DF MD, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13. https://doi.org/10.1056/NEJMoa1510665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. • Singh P, Agarwal N, Pal SK. Sequencing systemic therapies for metastatic kidney cancer. Curr Treat Options Oncol. 2015;16(1):316. https://doi.org/10.1007/s11864-014-0316-2. Comprehensive review on systematic therapy for renal-cell carcinoma.

    Article  PubMed  Google Scholar 

  13. • Choueiri TK, Motzer RJ. Systemic therapy for metastatic renal-cell carcinoma. N Engl J Med. 2017;376(4):354–66. https://doi.org/10.1056/NEJMra1601333. Comprehensive review on systematic therapy for renal-cell carcinoma.

    Article  CAS  PubMed  Google Scholar 

  14. Motzer RJ, Jonasch E, Agarwal N, Bhayani S, Bro WP, Chang SS, et al. Kidney Cancer, Version 2.2017, NCCN clinical practice guidelines in oncology. J Nat Comp Cancer Netw: JNCC. 2017;15(6):804–34. https://doi.org/10.6004/jnccn.2017.0100.

    Article  Google Scholar 

  15. de Velasco G, Hamieh L, Mickey S, Choueiri TK. Optimizing systemic therapy for metastatic renal cell carcinoma beyond the first-line setting. Urol Oncol. 2015;33(12):538–45. https://doi.org/10.1016/j.urolonc.2015.08.007.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9. https://doi.org/10.1038/nature12222.

  17. Mellert H, Foreman T, Jackson L, Maar D, Thurston S, Koch K, et al. Development and clinical utility of a blood-based test service for the rapid identification of actionable mutations in non-small cell lung carcinoma. J Mol Diagn: JMD. 2017;19(3):404–16. https://doi.org/10.1016/j.jmoldx.2016.11.004.

    Article  CAS  PubMed  Google Scholar 

  18. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92. https://doi.org/10.1056/NEJMoa1113205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hakimi AA, Pham CG, Hsieh JJ. A clear picture of renal cell carcinoma. Nat Gen. 2013;45(8):849–50. https://doi.org/10.1038/ng.2708.

    Article  CAS  Google Scholar 

  20. Ho TH, Choueiri TK, Wang K, Karam JA, Chalmers Z, Frampton G, et al. Correlation between molecular subclassifications of clear cell renal cell carcinoma and targeted therapy response. Eur Urol Focus. 2016;2(2):204–9. https://doi.org/10.1016/j.euf.2015.11.007.

    Article  PubMed  Google Scholar 

  21. Wan J, Zhu L, Jiang Z, Cheng K. Monitoring of plasma cell-free DNA in predicting postoperative recurrence of clear cell renal cell carcinoma. Urol Int. 2013;91(3):273–8. https://doi.org/10.1159/000351409.

    Article  CAS  PubMed  Google Scholar 

  22. Wan JC, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–38. https://doi.org/10.1038/nrc.2017.7.

    Article  CAS  PubMed  Google Scholar 

  23. Colwell J. Illumina spin-off to develop early-detection test. Cancer Discovery. 2016;6(4):OF3. https://doi.org/10.1158/2159-8290.cd-nb2016-015.

    Article  PubMed  Google Scholar 

  24. Jovelet C, Ileana E, Le Deley MC, Motte N, Rosellini S, Romero A, et al. Circulating cell-free tumor DNA analysis of 50 genes by next-generation sequencing in the prospective MOSCATO trial. Clin Cancer Res. 2016;22(12):2960–8. https://doi.org/10.1158/1078-0432.ccr-15-2470.

    Article  CAS  PubMed  Google Scholar 

  25. Maxwell KN, Soucier-Ernst D, Tahirovic E, Troxel AB, Clark C, Feldman M, et al. Comparative clinical utility of tumor genomic testing and cell-free DNA in metastatic breast cancer. Breast Cancer Res Treat. 2017;164(3):627–38. https://doi.org/10.1007/s10549-017-4257-x.

    Article  CAS  PubMed  Google Scholar 

  26. •• Lanman RB, Mortimer SA, Zill OA, Sebisanovic D, Lopez R, Blau S, et al. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PloS One. 2015;10(10):e0140712. https://doi.org/10.1371/journal.pone.0140712. Detailed description of the analytical and clinical validation of the ctDNA

    Article  PubMed  PubMed Central  Google Scholar 

  27. •• Vowles J, Odegaard J, Mortimer S, Fairclough S, Sikora M, Abdueva D, et al. Abstract 5705: Analytical validation of Guardant360 v2.10. Cancer Res. 2017;77(13 Supplement):5705. https://doi.org/10.1158/1538-7445.am2017-5705. Detailed description of the analytical and clinical validation of the ctDNA.

    Article  Google Scholar 

  28. Motzer RJ, Bander NH, Nanus DM. Renal-cell carcinoma. N Engl J Med. 1996;335(12):865–75. https://doi.org/10.1056/nejm199609193351207.

    Article  CAS  PubMed  Google Scholar 

  29. Janzen NK, Kim HL, Figlin RA, Belldegrun AS. Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol Clin North Am. 2003;30(4):843–52.

    Article  PubMed  Google Scholar 

  30. Al-Qassab U, Lorentz CA, Laganosky D, Ogan K, Master V, Pattaras J, et al. PNFBA-12 liquid biopsy for renal cell carcinoma. J Urol. 2017;197(4):e913–4. https://doi.org/10.1016/j.juro.2017.02.3241.

  31. • Hauser S, Zahalka T, Fechner G, Muller SC, Ellinger J. Serum DNA hypermethylation in patients with kidney cancer: results of a prospective study. Anticancer Res. 2013;33(10):4651–6. Use of CPG island in ctDNA as a potential biomarker for localized renal cell carcinoma.

    CAS  PubMed  Google Scholar 

  32. Lu H, Busch J, Jung M, Rabenhorst S, Ralla B, Kilic E, et al. Diagnostic and prognostic potential of circulating cell-free genomic and mitochondrial DNA fragments in clear cell renal cell carcinoma patients. Clinica Chimica Acta. Int J Clin Chem. 2016;452:109–19. https://doi.org/10.1016/j.cca.2015.11.009.

    CAS  Google Scholar 

  33. Fan G, Zhang K, Ding J, Li J. Prognostic value of EGFR and KRAS in circulating tumor DNA in patients with advanced non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget. 2017;8(20):33922–32. https://doi.org/10.18632/oncotarget.15412.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jia S, Zhang R, Li Z, Li J. Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer. Oncotarget. 2017;8(33):55632–45. https://doi.org/10.18632/oncotarget.17184.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman J, Chirieac LR, et al. Non-small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2017;15(4):504–35.

    Article  PubMed  Google Scholar 

  36. Pal SK, Sonpavde G, Agarwal N, Vogelzang NJ, Srinivas S, Haas NB, et al. Evolution of circulating tumor DNA profile from first-line to subsequent therapy in metastatic renal cell carcinoma. Eur Urol. 2017;72(4):557–64. https://doi.org/10.1016/j.eururo.2017.03.046. Largest study of ctDNA in metastatic renal cell carcinoma.

  37. •• Hahn AW, Gill DM, Maughan B, Agarwal A, Arjyal L, Gupta S, et al. Correlation of genomic alterations assessed by next-generation sequencing (NGS) of tumor tissue DNA and circulating tumor DNA (ctDNA) in metastatic renal cell carcinoma (mRCC): potential clinical implications. Oncotarget. 2017;8(20):33614–20. https://doi.org/10.18632/oncotarget.16833. Correlation of genomic alterations by tumor tissue DNA and ctDNA in metastatic renal cell carcinoma.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Skrypkina I, Tsyba L, Onyshchenko K, Morderer D, Kashparova O, Nikolaienko O, et al. concentration and methylation of cell-free DNA from blood plasma as diagnostic markers of renal cancer. Disease Markers. 2016;2016:3693096. https://doi.org/10.1155/2016/3693096.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ball MW, Gorin MA, Guner G, Pierorazio PM, Netto G, Paller CJ, et al. Circulating tumor DNA as a marker of therapeutic response in patients with renal cell carcinoma: a pilot study. Clin Genitourin Cancer. 2016;14(5):e515–e20. https://doi.org/10.1016/j.clgc.2016.03.019.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hauser S, Zahalka T, Ellinger J, Fechner G, Heukamp LC, Vonr A, et al. Cell-free circulating DNA: diagnostic value in patients with renal cell cancer. Anticancer Research. 2010;30(7):2785–9.

    CAS  PubMed  Google Scholar 

  41. Pal SK, Ali SM, Yakirevich E, Geynisman DM, Karam JA, Elvin JA, et al. Characterization of clinical cases of advanced papillary renal cell carcinoma via comprehensive genomic profiling. Eur Urol. 2017;73(1):71–8. https://doi.org/10.1016/j.eururo.2017.05.033. This study illustrates the importance of a specific genomic alterations in a nonclear cell subtype (papillary renal cell carcinoma).

  42. • Choueiri TK, Plimack E, Arkenau H-T, Jonasch E, DYC H, Powles T, et al. Biomarker-based phase II trial of savolitinib in patients with advanced papillary renal cell cancer. J Clin Oncol. 2017;35(26):2993–3001. https://doi.org/10.1200/jco.2017.72.2967. This study illustrates the importance of a specific genomic alterations in a nonclear cell subtype (papillary renal cell carcinoma).

    Article  PubMed  Google Scholar 

  43. Lim SM, Park HS, Kim S, Kim S, Ali SM, Greenbowe JR, et al. Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus. Oncotarget. 2016;7(9):10,547–56. https://doi.org/10.18632/oncotarget.7234.

    Google Scholar 

  44. Hahn AWNR, Pal SK, Agarwal N. Blood and tissue-based tumor genomics: a battle royale or match made in heaven? Ann Oncol. 2017;28(10):2333–5.

    Article  CAS  PubMed  Google Scholar 

  45. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92. https://doi.org/10.1056/NEJMoa1113205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Escudier B, Tannir NM, McDernott DF, Frontera OA, Melichar B, Plimack ER, et al. CheckMate 214: Efficacy and safety of nivolumab + ipilimumab (N+I) v sunitinib (S) for treatment-naïve advanced or metastatic renal cell carcinoma (mRCC), including IMDC risk and PD-L1 expression subgroups. Ann Oncol. 2017;28(suppl_5). https://doi.org/10.1093/annonc/mdx440.029.

  47. Gill D, Hahn AW, Sonpavde G, Agarwal N. Immunotherapy of advanced renal cell carcinoma: current and future therapies. Hum Vaccin Immunother. 2016;12(12):2997–3004. https://doi.org/10.1080/21645515.2016.1212794.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Le DT DJN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13. https://doi.org/10.1126/science.aan6733.

    Article  Google Scholar 

  49. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20. https://doi.org/10.1016/s0140-6736(16)00561-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khagi Y, Goodman AM, Daniels GA, Patel SP, Sacco AG, Randall JM, et al. Hypermutated circulating tumor DNA: correlation with response to checkpoint inhibitor-based immunotherapy. Clin Cancer Res. 2017;23(19):5729–36. https://doi.org/10.1158/1078-0432.ccr-17-1439.

    Article  CAS  PubMed  Google Scholar 

  51. Dizman N, Bergerot P, Bergerot C, Lanman RB, Raymond VM, Banks KC et al. Exceptional response to nivolumab rechallenge in metastatic renal cell carcinoma with parallel changes in genomic profile. Eur Urol. 2017;73(2):308–10. https://doi.org/10.1016/j.eururo.2017.08.006. Case report demonstrates the value of ctDNA as a predictive biomarker of response to immunotherapy in metastatic renal cell carcinoma.

  52. • Maia MC, Bergerot PG, Dizman N, Hsu J, Jones J, Lanman RB, et al. Association of circulating tumor DNA (ctDNA) Detection in metastatic renal cell carcinoma (mRCC) with tumor burden. Kidney. Cancer. 2017;1:65–70. https://doi.org/10.3233/KCA-170007. Association of radiographic tumor burden with ctDNA detection.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Kumar Pal MD.

Ethics declarations

Conflict of Interest

Paulo G. Bergerot declares that he has no conflict of interest.

Andrew W. Hahn declares that he has no conflict of interest.

Cristiane D. Bergerot declares that she has no conflict of interest.

Jeremy Jones declares that he has no conflict of interest.

Sumanta K. Pal has received compensation from Genentech, Aveo, Eisai, Roche, Pfizer, Novartis, Exelexis, Ipsen, Bristol-Myers Squibb, and Astellas for service as a consultant and has also received honoraria from Genentech.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genitourinary Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergerot, P.G., Hahn, A.W., Bergerot, C.D. et al. The Role of Circulating Tumor DNA in Renal Cell Carcinoma. Curr. Treat. Options in Oncol. 19, 10 (2018). https://doi.org/10.1007/s11864-018-0530-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-018-0530-4

Keywords

Navigation