Skip to main content

Advertisement

Log in

Treatment of NRAS-Mutant Melanoma

  • Skin Cancer (WH Sharfman, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

NRAS mutations in codons 12, 13, and 61 arise in 15–20 % of all melanomas. These alterations have been associated with aggressive clinical behavior and a poor prognosis. Until recently, there has been a paucity of promising genetically targeted therapy approaches for NRAS-mutant melanoma (and RAS-mutant malignancies in general). MEK inhibitors, particularly binimetinib, have shown activity in this cohort. Based on pre-clinical and early clinical studies, combining MEK inhibitors with agents inhibiting the cell cycling and the PI3K-AKT pathway appears to provide additional benefit. In particular, a strategy of MEK inhibition and CDK4/6 inhibition is likely to be a viable treatment option in the future, and is the most promising genetically targeted treatment strategy for NRAS-mutant melanoma developed to date. In addition, immune-based therapies have shown increasing activity in advanced melanoma and may be particularly effective in those with NRAS mutations. Combination strategies of immune and targeted therapies may also play a role in the future although clinical trials testing these approaches are in early stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–65.

    Article  CAS  PubMed  Google Scholar 

  2. Ascierto PA, Schadendorf D, Berking C, et al. MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol. 2013;14:249–56. This is the first clinical trial to show consistent activity of any genetically targeted therapy in NRAS mutant melanoma.

    Article  CAS  PubMed  Google Scholar 

  3. Sosman JA, Kittaneh M, Lolkema MPJ, Postow MA, Schwartz G, et al. A phase 1b/2 study of LEE011 in combination with binimetinib (MEK162) in patients with NRAS-mutant melanoma: early encouraging clinical activity. J Clin Oncol. 2014;32:9009. Abstract.

    Google Scholar 

  4. Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17:2105–16.

    CAS  PubMed  Google Scholar 

  5. Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23. Demonstrates an overall survival benefit of ipilimumab in unselected melanoma populations.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (Anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Robert C, Ribas A, Wolchok JD, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109–17. Large clinical trial demonstrating the benefit of pembrolizumab in patients who progressed on ipilimumab.

    Article  CAS  PubMed  Google Scholar 

  8. Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32(10):1020–30.

    Article  CAS  PubMed  Google Scholar 

  9. Weber JS, Kudchadkar RR, Yu B, et al. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol. 2013;31:4311–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.

    Article  CAS  PubMed  Google Scholar 

  11. Lovly CM, Dahlman KB, Fohn LE, et al. Routine multiplex mutational profiling of melanomas enables enrollment in genotype-driven therapeutic trials. PLoS One. 2012;7:e35309.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24:4340–6.

    Article  CAS  PubMed  Google Scholar 

  13. Charbel C, Fontaine RH, Malouf GG, et al. NRAS mutation is the sole recurrent somatic mutation in large congenital melanocytic nevi. J Investig Dermatol. 2014;134:1067–74.

    Article  CAS  PubMed  Google Scholar 

  14. Poynter JN, Elder JT, Fullen DR, et al. BRAF and NRAS mutations in melanoma and melanocytic nevi. Melanoma Res. 2006;16:267–73.

    Article  PubMed  Google Scholar 

  15. Devitt B, Liu W, Salemi R, et al. Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigment Cell Melanoma Res. 2011;24:666–72.

    Article  CAS  PubMed  Google Scholar 

  16. Jakob JA, Bassett Jr RL, Ng CS, et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012;118:4014–23. Establishes prognostic significance of NRAS mutations in advanced melanoma.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Carlino MS, Haydu LE, Kakavand H, et al. Correlation of BRAF and NRAS mutation status with outcome, site of distant metastasis and response to chemotherapy in metastatic melanoma. Br J Cancer. 2014;111:292–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–63. Large next generation sequencing study that defines much of the landscape of genetic alterations in melanoma.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11:761–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Douillard JY, Oliner KS, Siena S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369:1023–34.

    Article  CAS  PubMed  Google Scholar 

  21. Imielinski M, Berger AH, Hammerman PS, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150:1107–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Fedorenko IV, Gibney GT, Smalley KS. NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene. 2012;32(25):3009–18.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Halait H, Demartin K, Shah S, et al. Analytical performance of a real-time PCR-based assay for V600 mutations in the BRAF gene, used as the companion diagnostic test for the novel BRAF inhibitor vemurafenib in metastatic melanoma. Diagn Mol Pathol. 2012;21:1–8.

    Article  CAS  PubMed  Google Scholar 

  24. Frampton GM, Fichtenholtz A, Otto GA, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31:1023–31.

    Article  CAS  PubMed  Google Scholar 

  25. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.

    Article  CAS  PubMed  Google Scholar 

  27. Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.

    Article  CAS  PubMed  Google Scholar 

  28. Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov. 2007;6:541–55.

    Article  CAS  PubMed  Google Scholar 

  29. Kohl NE, Wilson FR, Mosser SD, et al. Protein farnesyltransferase inhibitors block the growth of RAS-dependent tumors in nude mice. Proc Natl Acad Sci U S A. 1994;91:9141–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Rao S, Cunningham D, de Gramont A, et al. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J Clin Oncol. 2004;22:3950–7.

    Article  CAS  PubMed  Google Scholar 

  31. Van Cutsem E, van de Velde H, Karasek P, et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol. 2004;22:1430–8.

    Article  PubMed  Google Scholar 

  32. Gajewski TF, Salama AK, Niedzwiecki D, et al. Phase II study of the farnesyltransferase inhibitor R115777 in advanced melanoma (CALGB 500104). J Transl Med. 2012;10:246.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kirschbaum MH, Synold T, Stein AS, et al. A phase 1 trial dose-escalation study of tipifarnib on a week-on, week-off schedule in relapsed, refractory or high-risk myeloid leukemia. Leukemia. 2011;25:1543–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Lorusso PM, Adjei AA, Varterasian M, et al. Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol. 2005;23:5281–93.

    Article  CAS  PubMed  Google Scholar 

  35. Rinehart J, Adjei AA, Lorusso PM, et al. Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol. 2004;22:4456–62.

    Article  CAS  PubMed  Google Scholar 

  36. Brown AP, Carlson TC, Loi CM, Graziano MJ. Pharmacodynamic and toxicokinetic evaluation of the novel MEK inhibitor, PD0325901, in the rat following oral and intravenous administration. Cancer Chemother Pharmacol. 2007;59:671–9.

    Article  CAS  PubMed  Google Scholar 

  37. LoRusso PM, Krishnamurthi SS, Rinehart JJ, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res. 2010;16:1924–37.

    Article  CAS  PubMed  Google Scholar 

  38. Haura EB, Ricart AD, Larson TG, et al. A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res. 2010;16:2450–7.

    Article  CAS  PubMed  Google Scholar 

  39. Yeh TC, Marsh V, Bernat BA, et al. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res. 2007;13:1576–83.

    Article  CAS  PubMed  Google Scholar 

  40. Adjei AA, Cohen RB, Franklin W, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol. 2008;26:2139–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kirkwood JM, Bastholt L, Robert C, et al. Phase II, open-label, randomized trial of the MEK1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clin Cancer Res. 2012;18:555–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Robert C, Dummer R, Gutzmer R, et al. Selumetinib plus dacarbazine versus placebo plus dacarbazine as first-line treatment for BRAF-mutant metastatic melanoma: a phase 2 double-blind randomised study. Lancet Oncol. 2013;14:733–40.

    Article  CAS  PubMed  Google Scholar 

  43. Carvajal RD, Sosman JA, Quevedo JF, et al. Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial. JAMA. 2014;311:2397–405.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367:1694–703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Falchook GS, Lewis KD, Infante JR, et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13:782–9. Phase I study of trametinib, shows a small amount of activity in the NRAS population.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Zimmer L, Barlesi F, Martinez-Garcia M, et al. Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations. Clin Cancer Res. 2014;20(16):4251–61.

    Article  CAS  PubMed  Google Scholar 

  47. Ribas A, Gonzalez R, Pavlick A, et al. Combination of vemurafenib and cobimetinib in patients with advanced BRAF(V600)-mutated melanoma: a phase 1b study. Lancet Oncol. 2014;15:954–65.

    Article  CAS  PubMed  Google Scholar 

  48. Hatzivassiliou G, Haling JR, Chen H, et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature. 2013;501:232–6.

    Article  CAS  PubMed  Google Scholar 

  49. Kwong LN, Costello JC, Liu H, et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med. 2012;18:1503–10. Shows the pre-clinical rationale for co-targeting MEK and CDK4/6 in NRAS mutant melanoma.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Krauthammer M, Kong Y, Ha BH, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44:1006–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Sheppard KE, McArthur GA. The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma. Clin Cancer Res. 2013;19:5320–8.

    Article  CAS  PubMed  Google Scholar 

  52. Young RJ, Waldeck K, Martin C, et al. Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines. Pigment Cell Melanoma Res. 2014;27(4):590–600.

    Article  CAS  PubMed  Google Scholar 

  53. Posch C, Moslehi H, Feeney L, et al. Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc Natl Acad Sci U S A. 2013;110:4015–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Jaiswal BS, Janakiraman V, Kljavin NM, et al. Combined targeting of BRAF and CRAF or BRAF and PI3K effector pathways is required for efficacy in NRAS mutant tumors. PLoS One. 2009;4:e5717.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Johnson DB, Smalley KS, Sosman JA. Molecular pathways: targeting NRAS in melanoma and acute myelogenous leukemia. Clin Cancer Res. 2014;20(16):4186–92.

    Article  CAS  PubMed  Google Scholar 

  56. Rebecca VW, Alicea GM, Paraiso KH, et al. Vertical inhibition of the MAPK pathway enhances therapeutic responses in NRAS-mutant melanoma. Pigment Cell Melanoma Res. 2014;27(6):1154–8.

    Article  CAS  PubMed  Google Scholar 

  57. Conrad WH, Swift RD, Biechele TL, et al. Regulating the response to targeted MEK inhibition in melanoma: enhancing apoptosis in NRAS- and BRAF-mutant melanoma cells with Wnt/beta-catenin activation. Cell Cycle. 2012;11:3724–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Means-Powell JA, Adjei AA, Puzanov I, Dy GK, Goff LA, et al. Safety and efficacy of MET inhibitor tivantinib (ARQ 197) combined with sorafenib in patients (pts) with NRAS wild-type or mutant melanoma from a phase I study. J Clin Oncol. 2012;30:8519. Abstract.

    Google Scholar 

  59. Su Y, Vilgelm AE, Kelley MC, et al. RAF265 inhibits the growth of advanced human melanoma tumors. Clin Cancer Res. 2012;18:2184–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Sharfman WH, Hodi FS, Lawrence DP, Flaherty KT, Amaravadi RK, et al. Results from the first-in-human (FIH) phase I study of the oral RAF inhibitor RAF265 administered daily to patients with advanced cutaneous melanoma. J Clin Oncol. 2011;29:8508. Abstract.

    Google Scholar 

  61. Morris EJ, Jha S, Restaino CR, et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov. 2013;3:742–50. Early characterization of ERK inhibitors which may have activity in both RAF and RAS mutant cancers.

    Article  CAS  PubMed  Google Scholar 

  62. Carlino MS, Todd JR, Gowrishankar K, et al. Differential activity of MEK and ERK inhibitors in BRAF inhibitor resistant melanoma. Mol Oncol. 2014;8:544–54.

    Article  CAS  PubMed  Google Scholar 

  63. Jameson KL, Mazur PK, Zehnder AM, et al. IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors. Nat Med. 2013;19:626–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Eskandarpour M, Kiaii S, Zhu C, et al. Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells. Int J Cancer. 2005;115:65–73.

    Article  CAS  PubMed  Google Scholar 

  65. Pecot CV, Calin GA, Coleman RL, et al. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer. 2011;11:59–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Davis ME, Zuckerman JE, Choi CH, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464:1067–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Haarberg HE, Paraiso KH, Wood E, et al. Inhibition of Wee1, AKT, and CDK4 underlies the efficacy of the HSP90 inhibitor XL888 in an in vivo model of NRAS-mutant melanoma. Mol Cancer Ther. 2013;12:901–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Feng Y, Lau E, Scortegagna M, et al. Inhibition of melanoma development in the Nras((Q61K))::Ink4a(-/-) mouse model by the small molecule BI-69A11. Pigment Cell Melanoma Res. 2013;26:136–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Rosenberg SA, Yang JC, Topalian SL, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA. 1994;271:907–13.

    Article  CAS  PubMed  Google Scholar 

  70. Schwartzentruber DJ. Guidelines for the safe administration of high-dose interleukin-2. J Immunother. 2001;24:287–93.

    Article  CAS  PubMed  Google Scholar 

  71. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.

    Article  CAS  PubMed  Google Scholar 

  72. Prieto PA, Yang JC, Sherry RM, et al. CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin Cancer Res. 2012;18:2039–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. McDermott D, Lebbe C, Hodi FS, et al. Durable benefit and the potential for long-term survival with immunotherapy in advanced melanoma. Cancer Treat Rev. 2014;40(9):1056–64.

    Article  PubMed  Google Scholar 

  74. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54. First large clinical trial to show activity of nivolumab.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Weber JS, Kudchadkar RR, Gibney GT, De Conti RC, Yu B, et al. Phase I/II trial of PD-1 antibody nivolumab with peptide vaccine in patients naive to or that failed ipilimumab. J Clin Oncol. 2013;31:9011.

    Article  Google Scholar 

  76. Joseph RW, Sullivan RJ, Harrell R, et al. Correlation of NRAS mutations with clinical response to high-dose IL-2 in patients with advanced melanoma. J Immunother. 2012;35:66–72. Suggests that NRAS mutations may correlate with response to immune therapy.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Johnson DB, Lovly CM, Flavin M, et al. NRAS mutation: a potential biomarker of clinical response to immune-based therapies in metastatic melanoma (MM). J Clin Oncol. 2013;31:9019. Abstract.

    Google Scholar 

  78. Ribas A, Hodi FS, Callahan M, et al. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368:1365–6.

    Article  CAS  PubMed  Google Scholar 

  79. Boni A, Cogdill AP, Dang P, et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 2010;70:5213–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethics guidelines

Conflict of interest

Douglas B. Johnson and Igor Puzanov declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding sources

Douglas B. Johnson was supported by NIH grant K12 CA 0906525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Johnson M.D..

Additional information

This article is part of the Topical Collection on Skin Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, D.B., Puzanov, I. Treatment of NRAS-Mutant Melanoma. Curr. Treat. Options in Oncol. 16, 15 (2015). https://doi.org/10.1007/s11864-015-0330-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-015-0330-z

Keywords

Navigation