Skip to main content

Advertisement

Log in

Childhood Acute Myeloid Leukemia

  • Pediatric Malignancies
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Despite the use of intensive chemotherapy and hematopoietic stem cell transplantation, approximately one-third of children with acute myeloid leukemia (AML) still suffer relapse of their disease. It is unlikely that improvements in outcome can be achieved by further intensification of conventional chemotherapy. Instead, advances in the treatment of children with AML will require a greater understanding of the biology of the disease, with particular attention to the genetic abnormalities underlying leukemogenesis and drug resistance. Future clinical trials should include refined risk-directed therapy based on the genetics of the leukemic blasts and the patient’s response to therapy. More important, we must develop alternative treatment approaches, such as agents that target specific leukemia-associated abnormalities and agents that selectively eradicate leukemic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, has been highlighted as: •Of importance

  1. Gilliland DG, Tallman MS: Focus on acute leukemias. Cancer Cell 2002;1:417–420. doi:10.1016/S1535–6108(02)00081-8

    Article  PubMed  CAS  Google Scholar 

  2. Kaspers GJ, Creutzig U: Pediatric acute myeloid leukemia: international progress and future directions. Leukemia 2005;19:2025–2029. doi:10.1038/sj.leu.2403958

    Article  PubMed  CAS  Google Scholar 

  3. Creutzig U, Zimmermann M, Ritter J et al. Treatment strategies and long-term results in paediatric patients treated in four consecutive AML-BFM trials. Leukemia 2005;19:2030–2042. doi:10.1038/sj.leu.2403920

    Article  PubMed  CAS  Google Scholar 

  4. Gibson BE, Wheatley K, Hann IM et al. Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia 2005;19:2130–2138. doi:10.1038/sj.leu.2403924

    Article  PubMed  CAS  Google Scholar 

  5. Ribeiro RC, Razzouk BI, Pounds S et al. Successive clinical trials for childhood acute myeloid leukemia at St Jude Children’s Research Hospital, from 1980 to 2000. Leukemia 2005;19:2125–2129. doi:10.1038/sj.leu.2403872

    Article  PubMed  CAS  Google Scholar 

  6. Smith FO, Alonzo TA, Gerbing RB et al. Long-term results of children with acute myeloid leukemia: A report of three consecutive Phase III trials by the Children’s Cancer Group: CCG 251, CCG 213 and CCG 2891. Leukemia 2005;19:2054–2062. doi:10.1038/sj.leu.2403925

    Article  PubMed  CAS  Google Scholar 

  7. Ravindranath Y, Chang M, Steuber CP et al. Pediatric Oncology Group (POG) studies of acute myeloid leukemia (AML): A review of four consecutive childhood AML trials conducted between 1981 and 2000. Leukemia 2005;19:2101–2116. doi:10.1038/sj.leu.2403927

    Article  PubMed  CAS  Google Scholar 

  8. Rubnitz JE, Lensing S, Zhou Y et al: Death during induction therapy and first remission of acute leukemia in childhood: The St. Jude experience. Cancer 2004;101:1677–1684 doi:10.1002/cncr.20532

    Article  PubMed  Google Scholar 

  9. O’Brien TA, Russell SJ, Vowels MR et al: Results of consecutive trials for children newly diagnosed with acute myeloid leukemia from the Australian and New Zealand Children’s Cancer Study Group. Blood 2002;100:2708–2716 doi:10.1182/blood.V100.8.2708

    Article  PubMed  CAS  Google Scholar 

  10. Lehrnbecher T, Zimmermann M, Reinhardt D et al: Prophylactic human granulocyte colony-stimulating factor after induction therapy in pediatric acute myeloid leukemia. Blood 2007;109:936–943 doi:10.1182/blood-2006–07-035915

    Article  PubMed  CAS  Google Scholar 

  11. Lange BJ, Smith FO, Feusner J et al. Outcomes in CCG-2961, a children’s oncology group phase 3 trial for untreated pediatric acute myeloid leukemia: A report from the children’s oncology group. Blood 2008;111:1044–1053 doi:10.1182/blood-2007-04-084293

    Article  PubMed  CAS  Google Scholar 

This paper describes the results of the most recent CCG trial, which examined the effects of idarubicin, fludarabine, and interleukin-2 on the outcome of children with AML. The results demonstrate that the use of these three agents did not significantly improve outcome and suggest that additional anti-leukemic effects will have to come from alternative approaches, such as targeted or cellular therapies.

  1. Cornelissen JJ, van Putten WL, Verdonck LF et al: Results of a HOVON/SAKK donor versus no-donor analysis of myeloablative HLA-identical sibling stem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults: Benefits for whom? Blood 2007;109:3658–3666

    Article  PubMed  CAS  Google Scholar 

  2. Razzouk BI, Estey E, Pounds S et al: Impact of age on outcome of pediatric acute myeloid leukemia: a report from 2 institutions. Cancer 2006;106:2495–2502

    Article  PubMed  Google Scholar 

  3. Rubnitz JE, Lensing S, Razzouk BI et al: Effect of race on outcome of white and black children with acute myeloid leukemia: The St. Jude experience. Pediatr Blood Cancer 2007;48:10–15

    Article  PubMed  Google Scholar 

  4. Aplenc R, Alonzo TA, Gerbing RB et al: Ethnicity and survival in childhood acute myeloid leukemia: A report from the Children’s Oncology Group. Blood 2006;108:74–80

    Article  PubMed  CAS  Google Scholar 

  5. Lange BJ, Gerbing RB, Feusner J et al: Mortality in overweight and underweight children with acute myeloid leukemia. J Am Med Assoc 2005;293:203–211

    Article  CAS  Google Scholar 

  6. Athale UH, Razzouk BI, Raimondi SC et al: Biology and outcome of childhood acute megakaryoblastic leukemia: A single institution’s experience. Blood 2001;97:3727–3732

    Article  PubMed  CAS  Google Scholar 

  7. Reinhardt D, Diekamp S, Langebrake C et al: Acute megakaryoblastic leukemia in children and adolescents, excluding Down’s syndrome: Improved outcome with intensified induction treatment. Leukemia 2005;19:1495–1496

    Article  PubMed  CAS  Google Scholar 

  8. Grimwade D, Walker H, Oliver F et al: The importance of diagnostic cytogenetics on outcome in AML: Analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 1998;92:2322–2333

    PubMed  CAS  Google Scholar 

  9. Appelbaum F, Kopecky KJ, Tallman M et al: The clinical spectrum of adult acute myeloid leukaemia associated with core binding factor translocations. Brit J Haematol 2006;135:165–173

    Article  Google Scholar 

  10. Rubnitz JE, Raimondi SC, Tong X et al: Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol 2002;20:2302–2309

    Article  PubMed  CAS  Google Scholar 

  11. Hasle H, Alonzo TA, Auvrignon A et al: Monosomy 7 and deletion 7q in children and adolescents with acute myeloid leukemia: An international retrospective study. Blood 2007;109:4641–4647

    Article  PubMed  CAS  Google Scholar 

  12. Paschka P, Marcucci G, Ruppert AS et al: Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): A Cancer and Leukemia Group B Study. J Clin Oncol 2006;24:3904–3911

    Article  PubMed  CAS  Google Scholar 

  13. Meshinchi S, Stirewalt DL, Alonzo TA et al: Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood 2003;102:1474–1479

    Article  PubMed  CAS  Google Scholar 

  14. Kiyoi H, Naoe T, Nakano Y et al: Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999;93:3074–3080

    PubMed  CAS  Google Scholar 

  15. Kottaridis PD, Gale RE, Frew ME et al: The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: Analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001;98:1752–1759

    Article  PubMed  CAS  Google Scholar 

  16. Meshinchi S, Woods WG, Stirewalt DL et al: Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001;97:89–94

    Article  PubMed  CAS  Google Scholar 

  17. Meshinchi S, Alonzo TA, Stirewalt DL et al: Clinical implications of FLT3 mutations in pediatric AML. Blood 2006;108:3654–3661

    Article  PubMed  CAS  Google Scholar 

  18. Pollard JA, Alonzo TA, Gerbing RB et al: FLT3 internal tandem duplication in CD34+/. Blood 2006;108:2764–2769

    Article  PubMed  CAS  Google Scholar 

  19. Mrozek K, Marcucci G, Paschka P et al: Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: Are we ready for a prognostically prioritized molecular classification? Blood 2007;109:431–448

    Article  PubMed  CAS  Google Scholar 

This paper nicely summarizes the current state of knowledge regarding the prognostic significance of molecular abnormalities in AML and proposes a novel risk classification scheme.

  1. Ross ME, Mahfouz R, Onciu M et al: Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004;104:3679–3687

    Article  PubMed  CAS  Google Scholar 

  2. Lacayo NJ, Meshinchi S, Kinnunen P et al: Gene expression profiles at diagnosis in de novo childhood AML patients identify FLT3 mutations with good clinical outcomes. Blood 2004;104:2646–2654

    Article  PubMed  CAS  Google Scholar 

  3. Campana D. Determination of minimal residual disease in leukaemia patients. Br J Haematol 2003;121:823–838

    Article  PubMed  Google Scholar 

  4. Sievers EL, Lange BJ, Alonzo TA et al: Immunophenotypic evidence of leukemia after induction therapy predicts relapse: Results from a prospective Children’s Cancer Group study of 252 patients with acute myeloid leukemia. Blood 2003;101:3398–3406

    Article  PubMed  CAS  Google Scholar 

  5. Coustan-Smith E, Ribeiro RC, Rubnitz JE et al: Clinical significance of residual disease during treatment in childhood acute myeloid leukaemia. Br J Haematol 2003;123:243–252

    Article  PubMed  Google Scholar 

  6. Elliott MA, Litzow MR, Letendre LL et al: Early peripheral blood blast clearance during induction chemotherapy for acute myeloid leukemia predicts superior relapse-free survival. Blood 2007;110:4172–4174

    Article  PubMed  CAS  Google Scholar 

  7. Perea G, Lasa A, Aventin A et al: Prognostic value of minimal residual disease (MRD) in acute myeloid leukemia (AML) with favorable cytogenetics [t(8;21) and inv(16)]. Leukemia 2006;20:87–94

    Article  PubMed  CAS  Google Scholar 

  8. Sung L, Lange BJ, Gerbing RB et al: Microbiologically documented infections and infection-related mortality in children with acute myeloid leukemia. Blood 2007;110:3532–3539

    Article  PubMed  CAS  Google Scholar 

This paper documents the high rate of bacterial and fungal infections among children receiving intensive chemotherapy for AML. The results suggest that trials of prophylactic antibiotics are warranted.

  1. Webb DK, Wheatley K, Harrison G et al: Outcome for children with relapsed acute myeloid leukaemia following initial therapy in the Medical Research Council (MRC) AML 10 trial. MRC Childhood Leukaemia Working Party. Leukemia 1999;13:25–31

    Article  PubMed  CAS  Google Scholar 

  2. Stahnke K, Boos J, Bender-Gotze C et al: Duration of first remission predicts remission rates and long-term survival in children with relapsed acute myelogenous leukemia. Leukemia 1998;12:1534–1538

    Article  PubMed  CAS  Google Scholar 

  3. Aladjidi N, Auvrignon A, Leblanc T et al: Outcome in children with relapsed acute myeloid leukemia after initial treatment with the French Leucemie Aique Myeloide Enfant (LAME) 89/91 protocol of the French Society of Pediatric Hematology and Immunology. J Clin Oncol 2003;21:4377–4385

    Article  PubMed  CAS  Google Scholar 

  4. Wells RJ, Adams MT, Alonzo TA et al: Mitoxantrone and cytarabine induction, high-dose cytarabine, and etoposide intensification for pediatric patients with relapsed or refractory acute myeloid leukemia: Children’s Cancer Group Study 2951. J Clin Oncol 2003;21:2940–2947

    Article  PubMed  CAS  Google Scholar 

  5. Rubnitz JE, Razzouk BI, Lensing S et al: Prognostic factors and outcome of recurrence in childhood acute myeloid leukemia. Cancer 2007;109:157–163

    Article  PubMed  Google Scholar 

  6. Jeha S, Gandhi V, Chan KW et al: Clofarabine, a novel nucleoside analog, is active in pediatric patients with advanced leukemia. Blood 2004;103:784–789

    Article  PubMed  CAS  Google Scholar 

This paper reported the activity of clofarabine in childhood leukemia and led to the FDA approval of this agent.

  1. Kell WJ, Burnett AK, Chopra R et al: A feasibility study of simultaneous administration of gemtuzumab ozogamicin with intensive chemotherapy in induction and consolidation in younger patients with acute myeloid leukemia. Blood 2003;102:4277–4283

    Article  PubMed  CAS  Google Scholar 

  2. Guzman ML, Swiderski CF, Howard DS et al: Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 2002;99:16220–16225

    Article  PubMed  CAS  Google Scholar 

  3. Insinga A, Monestiroli S, Ronzoni S et al: Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 2005;11:71–76

    Article  PubMed  CAS  Google Scholar 

  4. Smith BD, Levis M, Beran M et al: Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004;103:3669–3676

    Article  PubMed  CAS  Google Scholar 

  5. Guzman ML, Rossi RM, Neelakantan S et al: An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 2007;110:4427–4435

    Article  PubMed  CAS  Google Scholar 

  6. Guzman ML, Li X, Corbett CA et al: Rapid and selective death of leukemia stem and progenitor cells induced by the compound 4-benzyl, 2-methyl, 1,2,4-thiadiazolidine, 3,5 dione (TDZD-8). Blood 2007;110:4436–4444

    Article  PubMed  CAS  Google Scholar 

  7. Perl AE, Carroll M: Exploiting signal transduction pathways in acute myelogenous leukemia. Curr Treat Options Oncol 2007;8:265–276

    Article  PubMed  Google Scholar 

  8. Schimmer AD: Novel therapies targeting the apoptosis pathway for the treatment of acute myeloid leukemia. Curr Treat Options Oncol 2007;8:277–286

    Article  PubMed  Google Scholar 

  9. Leung W, Iyengar R, Turner V et al: Determinants of antileukemia effects of allogeneic NK cells. J Immunol 2004;172:644–650

    PubMed  CAS  Google Scholar 

  10. Ruggeri L, Capanni M, Urbani E et al: Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002;295:2097–2100

    Article  PubMed  CAS  Google Scholar 

  11. Giebel S, Locatelli F, Lamparelli T et al: Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 2003;102:814–819

    Article  PubMed  CAS  Google Scholar 

  12. Hsu KC, Keever-Taylor CA, Wilton A et al: Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood 2005;105:4878–4884

    Article  PubMed  CAS  Google Scholar 

  13. Miller JS, Cooley S, Parham P et al: Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood 2007;109:5058–5061

    Article  PubMed  CAS  Google Scholar 

  14. Ruggeri L, Mancusi A, Capanni M et al: Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: Challenging its predictive value. Blood 2007;110:433–440

    Article  PubMed  CAS  Google Scholar 

  15. Leung W, Iyengar R, Triplett B et al: Comparison of killer Ig-like receptor genotyping and phenotyping for selection of allogeneic blood stem cell donors. J Immunol 2005;174:6540–6545

    PubMed  CAS  Google Scholar 

  16. Miller JS, Soignier Y, Panoskaltsis-Mortari A et al: Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005;105:3051–3057. The results of this pilot study suggest that NK cell therapy may be a useful approach to the treatment of AML

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Cancer Center Support (CORE) grant P30 CA-21765 from the National Institutes of Health, and by the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey E. Rubnitz MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubnitz, J.E. Childhood Acute Myeloid Leukemia. Curr. Treat. Options in Oncol. 9, 95–105 (2008). https://doi.org/10.1007/s11864-008-0059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-008-0059-z

Keywords

Navigation