Skip to main content
Log in

Metric properties of the product of consecutive partial quotients in continued fractions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In the one-dimensional Diophantine approximation, by using the continued fractions, Khintchine’s theorem and Jarnik’s theorem are concerned with the growth of the large partial quotients, while the improvability of Dirichlet’s theorem is concerned with the growth of the product of consecutive partial quotients. This paper aims to establish a complete characterization on the metric properties of the product of the partial quotients, including the Lebesgue measure-theoretic result and the Hausdorff dimensional result. More precisely, for any x ∈ [0, 1), let x =[a1, a2, …] beits continued fraction expansion. The size of the following set, in the sense of Lebesgue measure and Hausdorff dimension, Em(ϕ):= {x ∈ [0, 1): an (x) ⋯ an+m−1 (x) ≥ ϕ(n) for infinitely many n ∈ ℕ}, are given completely, where m ≥ 1 is an integer and ϕ: ℕ → ℝ+ is a positive function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bakhtawar, P. Bos and M. Hussain, The sets of Dirichlet non-improvable numbers versus well-approximable numbers, Ergodic Theory and Dynamical Systems, to appear, https://doi.org/10.1017/etds.2019.41.

  2. A. Bakhtawar, P. Bos and M. Hussain, Hausdorff dimension of an exceptional set in the theory of continued fractions, Nonlinearity 33 (2020), 2615–2639.

    Article  MathSciNet  Google Scholar 

  3. V. Beresnevich, D. Dickinson and S. Velani, Measure theoretic laws for lim sup sets, Memoirs of the American Mathematical Society 179 (2006).

  4. F. Bernstein, Über eine Anwendung der Mengenlehre auf ein der Theorie der säkularen Störungen herruhrendes Problem, Mathematische Annalen 71 (1912), 417–439.

    Article  Google Scholar 

  5. E. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rendiconti del Circolo Matematico di Palermo 27 (1909), 247–271.

    Article  Google Scholar 

  6. E. Borel, Sur un problème de probabilités relatif aux fractions continues, Mathematische Annalen 72 (1912), 578–584.

    Article  MathSciNet  Google Scholar 

  7. K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, Hoboken, NJ, 2003.

    Book  Google Scholar 

  8. D.J. Feng, J. Wu, J. C. Liang and S. Tseng, Appendix to the paper by T. Luczak—a simple proof of the lower bound: “On the fractional dimension of sets of continued fractions”, Mathematika 44 (1997), 54–55.

    Article  MathSciNet  Google Scholar 

  9. P. Hanus, D. Mauldin and M. Urbański, Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems, Acta Mathematica Hungarica 96 (2002), 27–98.

    Article  MathSciNet  Google Scholar 

  10. G. Hardy and E. Wright, An Introduction to the Theory Numbers, The Clarendon Press, Oxford University Press, New York, 1979.

    MATH  Google Scholar 

  11. L. Huang and J. Wu, Uniformly non-improvable Dirichlet set via continued fractions, Proceedings of the American Mathematical Society 147 (2019), 4617–4624.

    Article  MathSciNet  Google Scholar 

  12. M. Hussain, D. Kleinbock, N. Wadleigh and B. W. Wang, Hausdorff measure of sets of Dirichlet non-improvable numbers, Mathematika 64 (2018), 502–518.

    Article  MathSciNet  Google Scholar 

  13. M. Iosifescu and C. Kraaikamp, Metrical Theory of Continued Fractions, Mathematics and Its Applications, Vol. 547, Kluwer Academic Publishers, Dordrecht, 2002.

    Book  Google Scholar 

  14. V. Jarnik, Über simultanen diophantischen approximation, Mathematische Zeitschrift 33 (1931), 505–543.

    Article  MathSciNet  Google Scholar 

  15. A. Ya. Khintchine, Einige Satze uber Kettenbruche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Mathematische Annalen 92 (1924), 115–125.

    Article  MathSciNet  Google Scholar 

  16. A. Ya. Khintchine, Continued Fractions, P. Noordhoff, Groningen, 1963.

    MATH  Google Scholar 

  17. A. Ya. Khintchine, Continued Fractions, University of Chicago Press, Chicago-London, 1964.

    MATH  Google Scholar 

  18. D. Kleinbock, I. Konstantoulas and F. K. Richter, Zero-one laws for eventually always hitting points in mixing systems, https://arxiv.org/abs/1904.08584.

  19. D. Kleinbock and N. Wadleigh, A zero-one law for improvements to Dirichlet’s Theorem, Proceedings of the American Mathematical Society 146 (2018), 1833–1844.

    Article  MathSciNet  Google Scholar 

  20. D. Kleinbock and N. Wadleigh, An inhomogeneous Dirichlet theorem via shrinking targets, Compositio Mathematica 155 (2019), 1402–1423.

    Article  MathSciNet  Google Scholar 

  21. B. Li, B. W. Wang, J. Wu and J. Xu, The shrinking target problem in the dynamical system of continued fractions, Proceedings of the London Mathematical Society 108 (2014), 159–186.

    Article  MathSciNet  Google Scholar 

  22. T. Luczak, On the fractional dimension of sets of continued fractions, Mathematika 44 (1997), 50–53.

    Article  MathSciNet  Google Scholar 

  23. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proceedings of the London Mathematical Society 73 (1996), 105–154.

    Article  MathSciNet  Google Scholar 

  24. D. Mauldin and M. Urbański, Conformal iterated function systems with applications to the geometry of continued fractions, Transactions of the American Mathematical Society 351 (1999), 4995–5025.

    Article  MathSciNet  Google Scholar 

  25. D. Mauldin and M. Urbański, Graph Directed Markov Systems. Geometry and Dynamics of Limit Sets, Cambridge Tracts in Mathematics, Vol. 148, Cambridge University Press, Cambridge, 2003.

    Book  Google Scholar 

  26. W. Philipp, Some metric theorems in number theory, Pacific Journal of Mathematics 20 (1967), 109–127.

    Article  MathSciNet  Google Scholar 

  27. W. M. Schmidt, Metrical theorems on fractional parts of sequences, Transactions of the American Mathematical Society 110 (1964), 493–518.

    Article  MathSciNet  Google Scholar 

  28. W. M. Schmidt, Diophantine Approxomation, Lecture Notes in Mathematics, Vol. 785, Springer, Berlin, 1980.

    Google Scholar 

  29. B. W. Wang and J. Wu, Hausdorff dimension of certain sets arising in continued fraction expansions, Advances in Mathematics 218 (2008), 1319–1339.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. Mumtaz Hussain for helpful communications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Additional information

This work was supported by NSFC 11831007, 11571127.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Wu, J. & Xu, J. Metric properties of the product of consecutive partial quotients in continued fractions. Isr. J. Math. 238, 901–943 (2020). https://doi.org/10.1007/s11856-020-2049-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2049-1

Navigation