Skip to main content
Log in

Effect of Tempering Condition on Microstructure, Mechanical Properties and Precipitates in AISI H13 Steel

  • Phase Transformations during Solid-phase Welding and Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The mechanical properties and microstructures, in particular precipitation in the AISI H13 steel, quenched and tempered from 773 K to 973 K for different periods, were systematically investigated by scanning electron microscopy, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The results indicate a sharp decrease in hardness at temperatures > 863 K during the first 2 h of tempering. Ultimate tensile strength and yield strength decrease, while elongation and impact energy increase with the increase of tempering temperature. The volume fraction of static recrystallization increases from the EBSD result. Regarding precipitates, the coarsening rate of M23C6 was much faster than that of MC and M2C and was verified by using the Ostwald ripening model. In addition, kinetic modeling of the softening of H13 during tempering from 863 K to 973 K was performed. This model was also applied successfully to predict the hardness of double-tempered H13 steel samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Q.C. Zhou, X.C. Wu, N.N. Shi, J.W. Li, and N. Min, Mater. Sci. Eng. A 528, 5696. (2011).

    Article  Google Scholar 

  2. D. Salcedo, C.J. Luis, R. Luri, J. León, I. Puertas, and J.P. Fuertes, Proc. Eng. 132, 1069. (2015).

    Article  Google Scholar 

  3. S.D. Lu, Z.B. Wang, and Lu, J. Mater. Sci. Technol. 26, 258. (2010).

    Article  Google Scholar 

  4. J.G. Ge, T.J. Ma, Y. Chen, T.N. Jin, H.G. Fu, R.S. Xiao, Y.P. Lei, and J. Lin, J. Alloys Compd. 783, 145. (2019).

    Article  Google Scholar 

  5. L.N. Zhou, G.Z. Tang, X.X. Ma, L.Q. Wang, and X.H. Zhang, Mater. Charact. 146, 258. (2018).

    Article  Google Scholar 

  6. X.Q. Wang, Z. Tao, and M.K. Hassan, J. Constr. Steel Res. 164, 105785. (2020).

    Article  Google Scholar 

  7. K. Chen, Z.H. Jiang, F.B. Liu, J. Yu, Y. Li, W. Gong, and C.Y. Chen, Mater. Sci. Eng. A 766, 138272. (2019).

    Article  Google Scholar 

  8. E.J. Mittemeher, L. Cheng, P.J. van der Schaaf, C.M. Brakman, and B.M. Korevaar, Metall. Trans. A 19, 925 (1988).

  9. J.J. Yan, H. Song, Y.P. Dong, W.M. Quach, and M. Yan, Mater. Sci. Eng. A 773, 138845. (2020).

    Article  Google Scholar 

  10. J. Zhu, Z.H. Zhang, and J.X. Xie, Mater. Sci. Eng. A 752, 101. (2019).

    Article  Google Scholar 

  11. Y.L. Wang, X. Song, and Y.M. Zhang, Mater. Res. Express 6, 096513. (2019).

    Article  Google Scholar 

  12. W.W. Song, Y.A. Min, and X.C. Wu, Trans. Mater. Heat Treat. 30, 122. (2009).

    Google Scholar 

  13. N. Mebarki, D. Delagnes, P. Lamesle, F. Delmas, and C. Levaillant, Mater. Sci. Eng. A 387–389, 171. (2004).

    Article  Google Scholar 

  14. N. Mebarki, Ph.D. Thesis, Ecole Nationale Supérieure des Mines deParis, (February 2003).

  15. N. Mebarki, P. Lamesle, D. Delagnes, F. Delmas, and C. Levaillant, in: J. Bergström, G. Fredriksson, M. Johansson, O. Kotik, and F. Thuvander(Eds.), The Use of Tool Steels: Experience and Research, Proceedings of the 6th International Tooling Conference, Karlstad University, Sweden, 10–13 September 2002, pp. 617–632.

  16. A.G. Ning, S. Yue, R. Gao, L.X. Li, and H.J. Guo, Metals 9, 1283. (2019).

    Article  Google Scholar 

  17. G.E. Totten, Steel Heat Treatment: Metallurgy and Technologies (CRC Press: Boca Raton, FL, USA, 2006), pp. 171–183.

  18. Z.Q. Cui, and Y.C. Oin, Metal Science and Heat Treatment, (Machinery Industry Press: Beijing, China, 2007), pp. 268–277.

  19. W.Q. Zhang, Phase transformation in solid metals and alloys (National defense Industry Press: 2015), pp. 95–102.

  20. R.J. Seher, H.M. James, G.N. Maniar, Stereology and Quantitative Metallography, Pellissier, G.E., Purdy, S.M., Eds. (ASTM International: West Conshohocken, PA, USA, 1972), pp. 119–137.

  21. I.M. Lifshitz, and V.V. Slyozov, J. Phys. Chem. Solids 19, 35. (1961).

    Article  Google Scholar 

  22. J.W. Martin, R.D. Doherty, B. Cantor, Stability of Microstructure in Metallic System, 2nd edn. (Cambridge University Press: Cambridge, UK, 1997), pp. 102–144.

  23. T. Philippe, and P.W. Voorhees, Acta Mater. 61, 4237 (2013).

    Article  Google Scholar 

  24. A. Umantsev, and G.B. Olson, Scr. Metall. Mater. 29, 1135 (1993).

    Article  Google Scholar 

  25. Q.L. Yong, Secondary Phases in Steels, (Metallurgical Industry Press: Beijing, China, 2006), pp. 86–253.

  26. E. Gamsjägera, J. Svobodab, and F.D. Fischerac, Comput. Mater. Sci. 32, 360 (2005).

  27. W.A. Johnson, and R.F. Mehl, Trans. Am. Inst. Min. Metall. Pet. Eng. 135, 416 (1939).

    Google Scholar 

  28. M. Avrami, J. Chem. Phys. 7, 1103 (1939).

    Article  Google Scholar 

  29. M. Avrami, J. Chem. Phys. 8, 212 (1940).

    Article  Google Scholar 

  30. M. Avrami, J. Chem. Phys. 9, 177 (1941).

    Article  Google Scholar 

  31. P. Watté, J. Van Humbeeck, and E. Aernoudt, Scr. Mater. 34, 89 (1996).

    Article  Google Scholar 

  32. Z. Zhang, D. Delagnes, and G. Bernhart, Mater. Sci. Eng. A 380, 222 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the China Scholarship Council under Grant No. 201806935054. This work was also supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China, under Grant No. 201802035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angang Ning.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 967 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, A., Liu, Y., Gao, R. et al. Effect of Tempering Condition on Microstructure, Mechanical Properties and Precipitates in AISI H13 Steel. JOM 73, 2194–2202 (2021). https://doi.org/10.1007/s11837-021-04694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04694-y

Navigation