Skip to main content
Log in

Clean Preparation of High-Purity Silicon from Rice Husk Ash by a Modified Metallurgical Method

  • Pyrometallurgical Processing of Secondary Resources
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Rice husk ash (RHA) has been used to prepare high-purity silicon by a combination of a silicon preparation process and a refining process. Raw materials including RHA, silica sand and SiO2-CaO-Al2O3 slag were initially pelletized and then smelted in an electric arc furnace. The results show that slag refining and acid leaching have significant influences on purifying Si products. With the addition of slag, the purity of Si increased from 94.96% to 96.47% and the contents of impurities such as Fe and P reduced from 2.06 wt.% and 0.09 wt.% to 0.77 wt.% and 0.05 wt.%, respectively. After acid leaching, the purity of the Si increased to 99.76% and the content of P reduced to 0.029 wt.%. The leaching kinetics analysis results show that the surface chemical reaction model is suitable to describe the extraction process of Fe, Al, and Ca in silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Maxime, Renew. Sustain. Energy Rev. 74, 733. (2017).

    Article  Google Scholar 

  2. N.E. Sajedeh, A. Saeed, and R.N. Sahar, Sol. Energy 148, 49. (2017).

    Article  Google Scholar 

  3. J.J. Wu, D. Yang, M. Xu, W.H. Ma, Q. Zhou, Z.F. Xia, Y. Lei, K.X. Wei, S.Y. Li, Z.J. Chen, and K.Q. Xie, Sep. Purif. Rev. 49, 68. (2018).

    Article  Google Scholar 

  4. Z.F. Nie, Y.Q. Hou, G. Xie, Y. Cui, and X.HYu. Int, J. Heat Mass Transf. Theory Appl. 90, 1026. (2015).

    Article  Google Scholar 

  5. L. Sun and K. Gong, Ind. Eng. Chem. Res. 40, 5861. (2001).

    Article  Google Scholar 

  6. J.H.S. Rêgo, A.A. Nepomuceno, E.P. Figueiredo, and N.P. Hasparyk, Constr. Build. Mater. 80, 56. (2015).

    Article  Google Scholar 

  7. P.D. Kartick, G. Sourav, and K.N. Milan, Mater. Lett. 87, 87. (2012).

    Article  Google Scholar 

  8. H.D. Banerjee, S. Sen, and H.N. Acharya, Mater. Sci. Eng. 52, 173. (1982).

    Article  Google Scholar 

  9. P. Mishra, A. Chakraverty, and H.D. Banerjee, J. Mater. Sci. 20, 4387. (1985).

    Article  Google Scholar 

  10. N. Ikram and M. Akhter, J. Mater. Sci. 23, 2379. (1988).

    Article  Google Scholar 

  11. K.K. Larbi. University of Toronto, Toronto (2010).

  12. K.K. Larbi, M. Barati, and A. McLean, Can. Metall. Q. 50, 341. (2011).

    Article  Google Scholar 

  13. C.M. Julien, J.K. David, M. Patrick, S. Kai, and M.L. Richard, Green Chem. 17, 3931. (2015).

    Article  Google Scholar 

  14. J. Kong, S.B. Gao, Y. Liu, X. Jin, D.H. Wei, S.N. Jiang, K.K. Ye, J.Q. Wang, P.F. Xing, and X.T. Luo, J. Hazard. Mater. 380, 120827. (2019).

    Article  Google Scholar 

  15. L. Hunt, J. Dismukes, J. Amick, A. Schei, and K. Larsen, J. Electrochem. Soc. 131, 1683. (1984).

    Article  Google Scholar 

  16. J.Y. Li, P.P. Cao, P. Ni, Y.Q. Li, and Y. Tan, Sep. Sci. Technol. 51, 1598. (2016).

    Google Scholar 

  17. Z.F. Xia, J.J. Wu, W.H. Ma, Y. Lei, K.X. Wei, and Y.N. Dai, Sep. Sci. Technol. 187, 25. (2017).

    Google Scholar 

  18. M. Li, T. Utigard, and M. Barati, Metall. Mater. Trans. B 45, 221. (2014).

    Article  Google Scholar 

  19. L.Q. Huang, H.X. Lai, C.H. Gan, H.P. Xiong, P.F. Xing, and X.T. Luo, Sep. Sci. Technol. 170, 408. (2016).

    Google Scholar 

  20. D.W. Luo, N. Liu, Y.P. Lu, G.L. Zhang, and T.J. Li, Nonferrous Metal Soc. 21, 1178. (2011).

    Article  Google Scholar 

  21. M. Li, T. Utigard, and M. Barati, Metall. Mater. Trans. B 46, 74. (2015).

    Article  Google Scholar 

  22. K. Hyuk, M. Hiroyuki, T. Fumitaka, W.L. Wang, D.J. Min, and I. Sohn, Metall. Mater. Trans. B 44, 5. (2013).

    Google Scholar 

  23. J.L. Blumenthal, E.A. Burns, and M.J. Santy, AIAA J. 4, 1053. (1966).

    Article  Google Scholar 

  24. V.M.F. Yulia, Y.X. Yang, B. Rob, K. Bert, and K. Henk, JOM 64, 957. (2012).

    Article  Google Scholar 

  25. F. Margarido, J.P. Martins, M.O. Figueiredo, and M.H. Bastos, Hydrometallurgy 34, 1. (1993).

    Article  Google Scholar 

  26. F. Margarido, M.H. Bastos, M.O. Figueiredo, and J.P. Martins, Mater. Chem. Phys. 38, 342. (1994).

    Article  Google Scholar 

  27. M. Fang, C.H. Lu, L.Q. Huang, H.X. Lai, J. Chen, J.T. Li, W.H. Ma, P.F. Xing, and X.T. Luo, Sep. Sci. Technol. 49, 2261. (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2018YFC1901805 and 2018YFC1901804,) and the National Natural Science Foundation of China (Grant No. U1902219).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Xing or Yanxin Zhuang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, J., Wei, D., Xing, P. et al. Clean Preparation of High-Purity Silicon from Rice Husk Ash by a Modified Metallurgical Method. JOM 73, 1919–1927 (2021). https://doi.org/10.1007/s11837-021-04674-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04674-2

Navigation