Skip to main content
Log in

Observation of Fundamental Mechanisms in Compression-Induced Phase Transformations Using Ultrafast X-ray Diffraction

  • Phase Transformations during Solid-phase Welding and Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

As theoretically hypothesized for several decades in group IV transition metals, we have discovered a dynamically stabilized body-centered cubic (bcc) intermediate state in Zr under uniaxial loading at sub-nanosecond timescales. Under ultrafast shock wave compression, rather than the transformation from α-Zr to the more disordered hex-3 equilibrium ω-Zr phase, in its place we find the formation of a previously unobserved nonequilibrium bcc metastable intermediate. We probe the compression-induced phase transition pathway in zirconium using time-resolved sub-picosecond x-ray diffraction analysis at the Linac Coherent Light Source. We also present molecular dynamics simulations using a potential derived from first-principles methods which independently predict this intermediate phase under ultrafast shock conditions. In contrast with experiments on longer timescale (> 10 ns) where the phase diagram alone is an adequate predictor of the crystalline structure of a material, our recent study highlights the importance of metastability and time dependence in the kinetics of phase transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Further comments about ultrafast shock experiments, elastic–plastic response, and their connection to longer time scale experiments are in the supplemental information.

References

  1. J.C. Polanyi and A.H. Zewail, Acc. Chem. Res. 28, 119 (1995).

    Article  Google Scholar 

  2. V.I. Levitas and R. Ravelo, Proc. Natl. Acad. Sci. 109, 13204 (2012).

    Article  Google Scholar 

  3. E.K. Cerreta, G.T. Gray, C.P. Trujillo, D.W. Brown, C.N. Tomé, M. Elert, M.D. Furnish, R. Chau, N. Holmes, and J. Nguyen, AIP Conf. Proc. 955, 635 (2007).

    Google Scholar 

  4. J. Zhang, Y. Zhao, C. Pantea, J. Qian, L.L. Daemen, P.A. Rigg, R.S. Hixson, C.W. Greeff, G.T. Gray, Y. Yang, L. Wang, Y. Wang, and T. Uchida, J. Phys. Chem. Solids 66, 1213 (2005).

    Article  Google Scholar 

  5. A.R. Kutsar, V.N. German, and G.I. Nosova, Sov. Phys. Dokl. 18, 733 (1974).

  6. P.O. Pashkov and U.U. Polyakova, Dokl. Akad. Nauk SSSR 204, 332 (1972).

    Google Scholar 

  7. Y.K. Vohra, S.K. Sikka, E.S.K. Menon, and R. Krishnan, Acta Metall. 28, 683 (1980).

    Article  Google Scholar 

  8. M.P. Usikov and V.A. Zilbershtein, Phys. Status Solidi A 19, 53 (1973).

    Article  Google Scholar 

  9. G. Jyoti, K.D. Joshi, C. Gupta, S.K. Sikka, G.K. Dey, and S. Banerjee, AIP Conf. Proc. 370, 227 (1996).

    Article  Google Scholar 

  10. D.R. Trinkle, D.M. Hatch, H.T. Stokes, R.G. Hennig, and R.C. Albers, Phys. Rev. B 72, 014105 (2005).

    Article  Google Scholar 

  11. H. Zong, T. Lookman, X. Ding, C. Nisoli, D. Brown, S.R. Niezgoda, and S. Jun, Acta Mater. 77, 191 (2014).

    Article  Google Scholar 

  12. S.-H. Guan and Z.-P. Liu, Phys. Chem. Chem. Phys. 18, 4527 (2016).

    Article  Google Scholar 

  13. M.T. Pérez-Prado and A.P. Zhilyaev, Phys. Rev. Lett. 102, 175504 (2009).

    Article  Google Scholar 

  14. M.K. Jacobsen, N. Velisavljevic, and S.V. Sinogeikin, J. Appl. Phys. 118, 025902 (2015).

    Article  Google Scholar 

  15. T. Sjostrom, S. Crockett, and S. Rudin, Phys. Rev. B 94, 144101 (2016).

    Article  Google Scholar 

  16. H.-R. Wenk, P. Kaercher, W. Kanitpanyacharoen, E. Zepeda-Alarcon, and Y. Wang, Phys. Rev. Lett. 111, 195701 (2013).

    Article  Google Scholar 

  17. W.J. Nellis, Rep. Prog. Phys. 69, 1479 (2006).

    Article  Google Scholar 

  18. K.J. Laidler and M.C. King, J. Phys. Chem. 87, 2657 (1983).

    Article  Google Scholar 

  19. J.C. Crowhurst, M.R. Armstrong, K.B. Knight, J.M. Zaug, and E.M. Behymer, Phys. Rev. Lett. 107, 144302 (2011).

    Article  Google Scholar 

  20. K.T. Gahagan, D.S. Moore, D.J. Funk, J.H. Reho, and R.L. Rabie, J. Appl. Phys. 92, 3679 (2002).

    Article  Google Scholar 

  21. V.H. Whitley, S.D. McGrane, D.E. Eakins, C.A. Bolme, D.S. Moore, and J.F. Bingert, J. Appl. Phys. 109, 013505 (2011).

    Article  Google Scholar 

  22. S.I. Ashitkov, M.B. Agranat, G.I. Kanel’, P.S. Komarov, and V.E. Fortov, JETP Lett. 92, 516 (2010).

    Article  Google Scholar 

  23. B.J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, and I.I. Oleynik, Phys. Rev. B 87, 054109 (2013).

    Article  Google Scholar 

  24. D. Milathianaki, S. Boutet, G.J. Williams, A. Higginbotham, D. Ratner, A.E. Gleason, M. Messerschmidt, M.M. Seibert, D.C. Swift, P. Hering, J. Robinson, W.E. White, and J.S. Wark, Science 342, 220 (2013).

    Article  Google Scholar 

  25. V.V. Zhakhovsky, M.M. Budzevich, N.A. Inogamov, I.I. Oleynik, and C.T. White, Phys. Rev. Lett. 107, 135502 (2011).

    Article  Google Scholar 

  26. J.C. Crowhurst, B.W. Reed, M.R. Armstrong, H.B. Radousky, J.A. Carter, D.C. Swift, J.M. Zaug, R.W. Minich, N.E. Teslich, and M. Kumar, J. Appl. Phys. 115, 113506 (2014).

    Article  Google Scholar 

  27. M.R. Armstrong, J.C. Crowhurst, S. Bastea, W.M. Howard, J.M. Zaug, and A.F. Goncharov, Appl. Phys. Lett. 101, 101904 (2012).

    Article  Google Scholar 

  28. L.B. Fletcher, H.J. Lee, T. Döppner, E. Galtier, B. Nagler, P. Heimann, C. Fortmann, S. LePape, T. Ma, M. Millot, A. Pak, D. Turnbull, D.A. Chapman, D.O. Gericke, J. Vorberger, T. White, G. Gregori, M. Wei, B. Barbrel, R.W. Falcone, C.-C. Kao, H. Nuhn, J. Welch, U. Zastrau, P. Neumayer, J.B. Hastings, and S.H. Glenzer, Nat. Photonics 9, 274 (2015).

    Article  Google Scholar 

  29. A.E. Gleason, C.A. Bolme, H.J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R.G. Kraus, J.H. Eggert, D.E. Fratanduono, G.W. Collins, R. Sandberg, W. Yang, and W.L. Mao, Nat. Commun. 6, 1 (2015).

    Google Scholar 

  30. T.D. Swinburne, M.G. Glavicic, K.M. Rahman, N.G. Jones, J. Coakley, D.E. Eakins, T.G. White, V. Tong, D. Milathianaki, G.J. Williams, and D. Rugg, Phys. Rev. B 93, 144119 (2016).

    Article  Google Scholar 

  31. D. Kraus, J. Vorberger, A. Pak, N.J. Hartley, L.B. Fletcher, S. Frydrych, E. Galtier, E.J. Gamboa, D.O. Gericke, S.H. Glenzer, E. Granados, M.J. MacDonald, A.J. MacKinnon, E.E. McBride, I. Nam, P. Neumayer, M. Roth, A.M. Saunders, A.K. Schuster, P. Sun, T. van Driel, T. Döppner, and R.W. Falcone, Nat. Astron. 1, 606 (2017).

    Article  Google Scholar 

  32. P.A. Rigg, C.W. Greeff, M.D. Knudson, and G.T. Gray, AIP Conf. Proc. 1195, 1171 (2009).

    Article  Google Scholar 

  33. J. Zhang, Y. Zhao, P. Rigg, R.S. Hixson, and G.T. Gray III, J. Phys. Chem. Solids 68, 2297 (2007).

    Article  Google Scholar 

  34. Y. Zhang, Y. Ren, P. Wang, Z. Zhao, Z. Liu, J. He, B. Xu, Y. Tian, and D. Yu, High Press. Res. 37, 278 (2017).

  35. E. Cerreta, G.T. Gray III, R.S. Hixson, P.A. Rigg, and D.W. Brown, Acta Mater. 53, 1751 (2005).

    Article  Google Scholar 

  36. C.W. Greeff, Model. Simul. Mater. Sci. Eng. 13, 1015 (2005).

    Article  Google Scholar 

  37. W. Nellis, Ultracondensed Matter by Dynamic Compression (Cambridge: Cambridge University Press, 2017).

    Book  Google Scholar 

  38. H.B. Radousky, M.R. Armstrong, R.A. Austin, E. Stavrou, S. Brown, A.A. Chernov, A.E. Gleason, E. Granados, P. Grivickas, N. Holtgrewe, H.J. Lee, S.S. Lobanov, B. Nagler, I. Nam, V. Prakapenka, C. Prescher, P. Walter, A.F. Goncharov, and J.L. Belof, Phys. Rev. Res. 2, 013192 (2020).

    Article  Google Scholar 

  39. W. Kraus and G. Nolze, J. Appl. Crystallogr. 29, 301 (1996).

    Article  Google Scholar 

  40. B. Olinger and J.C. Jamieson, High Temp. High Press. 5, 123 (1973).

    Google Scholar 

  41. H. Zong, G. Pilania, X. Ding, G.J. Ackland, and T. Lookman, NPJ Comput. Mater. 4, 1 (2018).

    Article  Google Scholar 

  42. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  43. R. Ravelo, B.L. Holian, T.C. Germann, and P.S. Lomdahl, Phys. Rev. B 70, 014103 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under contract DE-AC52-07NA27344. We acknowledge J.M. Zaug for helpful discussions and planning support. M.R.A., H.B.R, R.A.A., E.S., J.C.C, P.G., T.T.L., J.T.M., A.J.N, J.D.R., N.E.T., and J.L.B. gratefully acknowledge the LLNL LDRD program for funding support of this project under 16-ERD-037. G.J.A. and H.Z. thank EPSRC and ERC for funding. F.G., N.H., and S.L. acknowledge support of the Army Research Office (Grant Nos. 56122-CH-H and 71650-CH W911NF-19-2-0172), Carnegie Institution of Washington, and NSF. V.P. acknowledges support from National Science Foundation-Earth Sciences (EAR-1634415) and Department of Energy-GeoSciences (DEFG02-94ER14466). A.E.G. acknowledges supported by NSF Geophysics (EAR0738873), Los Alamos National Laboratory (LANL) Reines LDRD and FES, DOE ECA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Armstrong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12831 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armstrong, M.R., Radousky, H.B., Austin, R.A. et al. Observation of Fundamental Mechanisms in Compression-Induced Phase Transformations Using Ultrafast X-ray Diffraction. JOM 73, 2185–2193 (2021). https://doi.org/10.1007/s11837-020-04535-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04535-4

Navigation