Skip to main content
Log in

Effect of Low-Temperature Plasma Treatment on Surface Modification of Polycaprolactone Pellets and Thermal Properties of Extruded Filaments

  • Advanced Manufacturing for Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Polycaprolactone (PCL) polymer has been surface modified using oxygen low-temperature plasma and melt extruded into single filaments. Oxygen plasma was generated using a radiofrequency source with power of 150 W. The PCL polymer samples were treated with plasma for various durations of 5 min, 10 min, and 20 min. Water contact angle measurements were carried out to assess the wettability, revealing that the treatments reduced the contact angle by up to 11°. Changes in the chemical bonding and surface compositions were characterized by using x-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, revealing a high concentration of oxygen functionalities on the surface. Crystallinity changes were studied by using x-ray diffraction analysis. The surface morphology of the polymer was investigated using field-emission scanning electron microscopy. The thermal degradation and melting behavior was studied using thermogravimetric analysis and differential scanning calorimetry, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. d’Agostino, P. Favia, C. Oehr, and M.R. Wertheimer, Plasma Process. Polym. 2, 7 (2005).

    Article  Google Scholar 

  2. L.S. Nair and C.T. Laurencin, Prog. Polym. Sci. 32, 762 (2007).

    Article  Google Scholar 

  3. H. Tian, Z. Tang, X. Zhuang, X. Chen, and X. Jing, Prog. Polym. Sci. 37, 237 (2012).

    Article  Google Scholar 

  4. Yazhong Bu, Jianzhong Bei, and Shenguo Wang, Front. Bioeng. Biotechnol. 7, 98 (2019).

    Article  Google Scholar 

  5. T.K. Dash and V.B. Konkimalla, J. Control. Release 158, 15 (2012).

    Article  Google Scholar 

  6. M. Quiquerez, M. Peroglio, L. Gremillard, J. Chevalier, L. Chazeau, C. Gauthier, T. Hamaide, and A. Bignon, Key Eng. Mater. 361, 403–406 (2008).

    Google Scholar 

  7. A.P. Zhu, M.B. Chan-Park, and J.X. Gao, J. Biomed. Mater. Res. B Appl. Biomater. 76, 76 (2006).

    Article  Google Scholar 

  8. M. Lotfi, M. Nejib, and M. Naceur, Adv. Biomater. Sci. Biomed. Appl. 8, 208 (2013).

    Google Scholar 

  9. Savelyeva MS, A.A. Abalymov, G.P. Lyubun, Vidyasheva IV, A.M. Yashchenok, T.E.L. Douglas, D.A. Gorin, and B.V. Parakhonskiy, J. Biomed. Mater. Res. A 105, 94 (2017).

    Article  Google Scholar 

  10. S.N. Gorodzha, A.R. Muslimov, D.S. Syromotina, A.S. Timin, N.Y. Tcvetkov, K.V. Lepik, A.V. Petrova, M.A. Surmeneva, D.A. Gorin, G.B. Sukhorukov, and R.A. Surmenev, Colloids Surf. B Biointerfaces 160, 48 (2017).

    Article  Google Scholar 

  11. Albino Martins, Elisabete D. Pinho, Susana Faria, Iva Pashkuleva, Alexandra P. Marques, Rui L. Reis, and Nuno M. Neves, Small 5, 1195 (2009).

    Google Scholar 

  12. I. Adamovich, S.D. Baalrud, A. Bogaerts, P.J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, et al. J. Phys. D Appl. Phys. 508, 1 (2017).

  13. P.K. Chu, J.Y. Chen, L.P. Wang, and N. Huang, Mater. Sci. Eng. R Rep. 36, 143 (2002).

    Article  Google Scholar 

  14. Melanie Macgregor and Krasimir Vasilev, Materials 12, 191 (2019).

    Article  Google Scholar 

  15. Kristen R. Kull, Michelle L. Steen, and Ellen R. Fisher, J. Membrane Sci. 246, 203 (2005).

    Article  Google Scholar 

  16. M.R. Sanchis, V. Blanes, M. Blanes, D. Garcia, and R. Balart, Eur. Polym. J. 42, 1558 (2006).

    Article  Google Scholar 

  17. Jiangnan Lai, Bob Sunderland, Jianming Xue, Sha Yan, Weijiang Zhao, Melvyn Folkard, Barry D. Michael, and Yugang Wang, Appl. Surf. Sci. 252, 3375 (2006).

    Article  Google Scholar 

  18. S. Yoshida, K. Hagiwara, T. Hasebe, and A. Hotta, Surf. Coat. Technol. 233, 99 (2013).

    Article  Google Scholar 

  19. Hisham Abourayana, Peter Dobbyn, and Denis Dowling, Plasma Processes Polym. 15, 3 (2018).

    Article  Google Scholar 

  20. R.L. Reis and J.S. Román, Biodegradable Systems in Tissue Engineering and Regenerative Medicine (Boca Raton: CRC, 2004).

    Book  Google Scholar 

  21. C. López-Santos, A. Terriza, J. Portoles, F. Yubero, and A.R. González-Elipe, J. Phys. Chem. C 119, 20446 (2015).

    Article  Google Scholar 

  22. R. Ghobeira, N. De Geyter, and R. Morent, Biodegradable Polymers: Recent Developments and New Perspectives (Zagreb: IAPC, 2017), pp. 191–236.

    Book  Google Scholar 

  23. E. Pakdel, J. Fang, L. Sun, and X. Wang. Nanocoatings for smart textiles, in Smart Textiles: Wearable Nanotechnology, edited by N.D. Yilmaz, (Wiley: Hoboken, 2018), p. 247.

    Chapter  Google Scholar 

  24. A.A. Ivanova, D.S. Syromotina, S.N. Shkarina, R. Shkarin, A. Cecilia, V. Weinhardt, and T. Baumbach, et al., RSC Adv. 8, 39106 (2018).

    Article  Google Scholar 

  25. Ita Junkar, Uroš Cvelbar, Alenka Vesel, Nina Hauptman, and Miran Mozetič, Plasma Processes Polym. 6, 667 (2009).

    Article  Google Scholar 

  26. H. Cui and P.J. Sinko, Front. Mater. Sci. 6, 47 (2012).

    Article  Google Scholar 

  27. M.P. Prabhakaran, J. Venugopal, C.K. Chan, and S. Ramakrishna, Nanotechnology 19, 455102 (2008).

    Article  Google Scholar 

  28. Zuwei Ma, Wei He, Thomas Yong, and S. Ramakrishna, Tissue Eng. 11, 1149 (2005).

    Article  Google Scholar 

  29. K. Fujihara, M. Kotaki, and S. Ramakrishna, Biomaterials 26, 4139 (2005).

    Article  Google Scholar 

  30. N.E. Zander, J.A. Orlicki, A.M. Rawlett, and T.P. Beebe Jr, ACS Appl. Mater. Interfaces 4, 2074 (2012).

    Article  Google Scholar 

  31. T. Jacobs, N. De Geyter, R. Morent, T. Desmet, P. Dubruel, and C. Leys, Surf. Coat. Technol. 205, S543 (2011).

    Article  Google Scholar 

  32. L.A. Can-Herrera, A. Ávila-Ortega, S. de la Rosa-García, A.I. Oliva, J.V. Cauich-Rodríguez, and J.M. Cervantes-Uc, Eur. Polym. J. 84, 502 (2016).

    Article  Google Scholar 

  33. M. Asadian, S. Grande, I. Onyshchenko, R. Morent, H. Declercq, and N. De Geyter, Appl. Surf. Sci. 481, 1554 (2019).

    Article  Google Scholar 

  34. G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers. The Scienta ESCA300 Database, Chichester, New York (1992).

  35. K.H. Lee, H.Y. Kim, M.S. Khil, Y.M. Ra, and D.R. Lee, Polymer 44, 1287 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by funding agencies through Grant NSF-AL EPSCoR 16552820, GRSP AL-EPSCoR, and NSF-MRI 1531934. The authors also acknowledge Mr. Paul Simutis of DataPhysics Instruments USA Corp, Charlotte, NC for conducting water contact angle measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaya Rangari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, Z., Jeelani, S. & Rangari, V. Effect of Low-Temperature Plasma Treatment on Surface Modification of Polycaprolactone Pellets and Thermal Properties of Extruded Filaments. JOM 72, 1523–1532 (2020). https://doi.org/10.1007/s11837-020-04004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04004-y

Navigation