Skip to main content
Log in

Experimental Study of Disruption of Columnar Grains During Rapid Solidification in Additive Manufacturing

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Over the years, many studies have been conducted to study and analyze the grain structures of metal alloys during additive manufacturing to improve mechanical properties. In particular, columnar grains are observed predominantly during rapid solidification of molten metal. This leads to lower mechanical properties and requires expensive secondary heat-treatment processes. This study is aimed at disrupting the formation of columnar grain growth during rapid solidification using ultrasonic vibration and analyzes the effects on grain structure and mechanical properties. A gas-metal arc welder mounted on a Rep-Rap-based low-cost metal 3 Dimension printer was used to deposit ER70S-6 mild steel layers on a plate. A contact-type ultrasonic transducer with a control system to vary the frequency and power of the vibration was used. The effects of ultrasonic vibration were determined from the statistical analysis of microstructure and micro-indentation techniques on the deposited layer and heat-affected zone. It was found that both frequency and interaction between frequency and power had significant impact on the refinement of average grain size up to 10.64% and increased the number of grains by approximately 41.78%. Analysis of micro-indentation tests showed that there was an increase of approximately 14.30% in micro-hardness due to the applied frequency during rapid solidification. A pole diagram shows that application of vibration causes randomization of grain orientation. Along with the results from this study, further efforts in modeling and experimentation of multi-directional vibrations would lead to a better understanding of disrupting columnar grains in applications that use mechanical vibrations, such as welding, directed energy deposition, brazing, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.C. Anzalone, C. Zhang, B. Wijnen, P.G. Sanders, and J.M. Pearce, Access IEEE 1, 803 (2013).

    Article  Google Scholar 

  2. S.M. Kelly and S.L. Kampe, Metall. Mater. Trans. A 35, 1861 (2004).

    Article  Google Scholar 

  3. Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials Processes, and Systems (Upper Saddle River: Prentice Hall, 1996), pp. 14–18.

    Google Scholar 

  4. R.T. McGoldrick and H.E. Saunders, J. Am. Soc. Nav. Eng. 55, 589 (1943).

    Google Scholar 

  5. C.A. Walker, A.J. Waddell, and D.J. Johnston, Proc. Inst. Mech. Eng. Part E 209, 51 (1995).

    Article  Google Scholar 

  6. K.P. Karunakaran, S. Suryakumar, V. Pushpa, and S. Akula, Robot. Comput. Integr. Manuf. 26, 490 (2010).

    Article  Google Scholar 

  7. F. Liou, K. Slattery, M. Kinsella, J. Newkirk, H. Chou, and R. Landers, Rapid Prototyp. J. 13, 236 (2007).

    Article  Google Scholar 

  8. R. Dawson and D.G. Moffat, J. Eng. Mater. Technol. 102, 169 (1980).

    Article  Google Scholar 

  9. Q. Lu, L. Chen, and C. Ni, Mater. Sci. Eng. A 457, 246 (2007).

    Article  Google Scholar 

  10. J. Xu, L. Chen, and C. Ni, Int. J. Press. Vessels Pip. 84, 298 (2007).

    Article  Google Scholar 

  11. E. Foroozmehr, D. Lin, and R. Kovacevic, J. Manuf. Process. 11, 38 (2009).

    Article  Google Scholar 

  12. S. Kwofie, Mater. Sci. Eng. A 516, 154 (2009).

    Article  Google Scholar 

  13. A.S.M.Y. Munsi, A.J. Waddell, and C.A. Walker, Strain 37, 141 (2001).

    Article  Google Scholar 

  14. W. Wu, Scr. Mater. 42, 661 (2000).

    Article  Google Scholar 

  15. L. He, M. Wu, L. Li, and H. Hao, Appl. Phys. 89, 131504 (2006).

    Google Scholar 

  16. A. Verma, S.P. Tewari, and J. Prakash, Int. J. Eng. Sci. Res. Technol. 3, 5215 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guha Manogharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manogharan, G., Yelamanchi, B., Aman, R. et al. Experimental Study of Disruption of Columnar Grains During Rapid Solidification in Additive Manufacturing. JOM 68, 842–849 (2016). https://doi.org/10.1007/s11837-015-1800-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1800-2

Navigation