Skip to main content

Advertisement

Log in

Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Materials with low stacking fault energies have been long sought for their many desirable mechanical attributes. Although there have been many successful reports of low stacking fault alloys (for example Cu-based and Mg-based), many have lacked sufficient strength to be relevant for structural applications. The recent discovery and development of multicomponent equiatomic alloys (or high-entropy alloys) that form as simple solid solutions on ideal lattices has opened the door to investigate changes in stacking fault energy in materials that naturally exhibit high mechanical strength. We report in this article our efforts to determine the stacking fault energies of two- to five-component alloys. A range of methods that include ball milling, arc melting, and casting, is used to synthesize the alloys. The resulting structure of the alloys is determined from x-ray diffraction measurements. First-principles electronic structure calculations are employed to determine elastic constants, lattice parameters, and Poisson’s ratios for the same alloys. These values are then used in conjunction with x-ray diffraction measurements to quantify stacking fault energies as a function of the number of components in the equiatomic alloys. We show that the stacking fault energies decrease with the number of components. Nonequiatomic alloys are also explored as a means to further reduce stacking fault energy. We show that this strategy leads to a means to further reduce the stacking fault energy in this class of alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, and T.G. Langdon, Appl. Phys. Lett. 89, 121906 (2006).

    Article  Google Scholar 

  2. Y.L. Gong, C.E. Wen, Y.C. Li, X.X. Wu, L.P. Cheng, X.C. Han, and X.K. Zhu, Mater. Sci. Eng. A 569, 144 (2013).

    Article  Google Scholar 

  3. P.-L. Sun, Y.H. Zhao, J.C. Cooley, M.E. Kassner, Z. Horita, T.G. Langdon, E.J. Lavernia, and Y.T. Zhu, Mater. Sci. Eng. A 525, 83 (2009).

    Article  Google Scholar 

  4. K. Youssef, M. Sakaliyska, H. Bahmanpour, R. Scattergood, and C. Koch, Acta Mater. 59, 5758 (2011).

    Article  Google Scholar 

  5. H. Bahmanpour, A. Kauffmann, M.S. Khoshkhoo, K.M. Youssef, S. Mula, J. Freudenberger, J. Eckert, R.O. Scattergood, and C.C. Koch, Mater. Sci. Eng. A 529, 230 (2011).

    Article  Google Scholar 

  6. Z.W. Wang, Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, Y.T. Zhu, Z. Horita, and T.G. Langdon, Scripta Mater. 60, 52 (2009).

    Article  Google Scholar 

  7. X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon, Scripta Mater. 64, 954 (2011).

    Article  Google Scholar 

  8. G.E. Dieter, Mechanical Metallurgy, 3rd ed. (New York: McGraw-Hill, 1986), pp. 135–157.

    Google Scholar 

  9. Y. Zhang, N.R. Tao, and K. Lu, Scripta Mater. 60, 211 (2009).

    Article  Google Scholar 

  10. W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, and S.N. Mathaudhu, Mater. Res. Lett. 1, 61 (2013).

    Article  Google Scholar 

  11. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  12. S. Guo and C. Liu, Prog. Nat. Sci.: Mater. Int. 21, 433 (2011).

    Article  Google Scholar 

  13. F. Otto, Y. Yang, H. Bei, and E.P. George, Acta Mater. 61, 2628 (2013).

    Article  Google Scholar 

  14. S. Guo, C. Ng, J. Lu, and C.T. Liu, J. Appl. Phys. 109, 103505 (2011).

    Article  Google Scholar 

  15. R.J.D. Tilley, Understanding Solids: The Science of Materials (Hoboken: Wiley, 2004).

    Book  Google Scholar 

  16. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004).

    Article  Google Scholar 

  17. M. Leoni, T. Confente, and P. Scardi, Z. Kristallogr 23, 249 (2006).

    Article  Google Scholar 

  18. G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).

    Article  Google Scholar 

  19. H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (New York: Wiley, 1974), pp. 660–662.

    Google Scholar 

  20. R.E. Schramm and R.P. Reed, Metall. Trans. A 7A, 359 (1976).

    Article  Google Scholar 

  21. L. Vitos, Phys. Rev. B 64, 014107 (2001).

    Article  Google Scholar 

  22. L. Vitos, Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications (London: Springer, 2007).

    Google Scholar 

  23. P. Soven, Phys. Rev. 156, 809 (1967).

    Article  Google Scholar 

  24. L. Vitos, I. Abrikosov, and B. Johansson, Phys. Rev. Lett. 87, 156401 (2001).

    Article  Google Scholar 

  25. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  26. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  27. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  28. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  Google Scholar 

  29. A. Zunger, S.-H. Wei, L.G. Ferreira, and J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990).

    Article  Google Scholar 

  30. A. van de Walle, M. Asta, and G. Ceder, CALPHAD 26, 539 (2002).

    Article  Google Scholar 

  31. O. Andersen, O. Jepsen, and G. Krier, Lectures on Methods of Electronic Structure Calculations, ed. V. Kumar, O.K. Andersen, and A. Mookerjee (Singapore: World Scientific, 1994).

  32. L. Vitos, P. Korzhavyi, and B. Johansson, Phys. Rev. Lett. 88, 13 (2002).

    Article  Google Scholar 

  33. L. Vitos, P.A. Korzhavyi, J.-O. Nilsson, and B. Johansson, Phys. Scripta 77, 065703 (2008).

    Article  Google Scholar 

  34. J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  35. J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).

    Article  Google Scholar 

  36. B.L. Gyorffy, A.J. Pindor, J. Staunton, G.M. Stocks, and H. Winter, J. Phys. F: Met. Phys. 15, 1337 (1985).

    Article  Google Scholar 

  37. P. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  38. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  39. C. Jiang, L. Chen, and Z.-K. Liu, Acta Mater. 53, 2643 (2005).

    Article  Google Scholar 

  40. J. Pezold, A. Dick, M. Friák, and J. Neugebauer, Phys. Rev. B 81, 094203 (2010).

    Article  Google Scholar 

  41. S. Lu, Q.-M. Hu, E.K. Delczeg-Czirjak, B. Johansson, and L. Vitos, Acta Mater. 60, 4506 (2012).

    Article  Google Scholar 

  42. L. Vitos, J.-O. Nilsson, and B. Johansson, Acta Mater. 54, 3821 (2006).

    Article  Google Scholar 

  43. M.S. Lucas, L. Mauger, J.A. Muñoz, Y. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, and Z. Turgut, J. Appl. Phys. 109, 07E307 (2011).

    Google Scholar 

  44. S. Vives, E. Gaffet, and C. Meunier, Mater. Sci. Eng. A 336, 229 (2004).

    Article  Google Scholar 

  45. M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos, and B.M. Klein, Phys. Rev. B 41, 10311 (1990).

    Article  Google Scholar 

  46. F. Tian, L.K. Varga, N. Chen, L. Delczeg, and L. Vitos, Phys. Rev. B 87, 075144 (2013).

    Article  Google Scholar 

  47. G. Grimvall, Thermophysical Properties of Materials (Amsterdam: North-Holland, 1999).

    Google Scholar 

  48. H.M. Ledbetter and R.P. Reed, J. Phys. Chem. Ref. Data 2, 531 (1973).

    Article  Google Scholar 

  49. C.B. Carter and S.M. Holmes, Philos. Mag. 35, 1161 (1977).

    Article  Google Scholar 

  50. R.E. Schramm and R.P. Reed, Metall. Trans. A 6, 1345 (1975).

    Article  Google Scholar 

  51. M.F. Denanot and J.P. Villain, Phys. Status Solidi A 8, K125 (1971).

    Article  Google Scholar 

  52. A. Gali and E.P. George, Intermetallics 39, 74 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The work reported in this manuscript was made possible through support from the National Science Foundation from the Metals and Metallic Nanostructures program under grant DMR-1104930. D.L.I. and C.N. would also like to acknowledge Levente Vitos for sharing his EMTO-CPA code for work on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Irving.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaddach, A.J., Niu, C., Koch, C.C. et al. Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy. JOM 65, 1780–1789 (2013). https://doi.org/10.1007/s11837-013-0771-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0771-4

Keywords

Navigation