Skip to main content
Log in

TiO2 nanotube structures for enhanced cell and biological functionality

  • Low-dimensional Nanomaterials
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nanostructures have pronounced effects on biological processes such as growth of cells and their functionality. Advances in biomaterial surface structure and design have resulted in improved tissue engineering. Nanotechnology can be utilized for optimization of titanium implants with a formation of vertically aligned TiO2 nanotube arrays on the implant surface. The anodic oxidation of the titanium implant surface to form a TiO2 nanotube array involves electrochemical processes and self assembly. In this paper, the mechanism of nanotube formation, nanotube bio-characteristics, and their emerging role in soft and hard tissue engineering as well as in regenerative medicine will be reviewed, and the beneficial effects of surface nanotubes on cell adhesion, proliferation, and functionality will be discussed in relation to potential orthopedics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Oh et al., “Significantly Accelerated Osteoblast Cell Growth on Aligned TiO2 Nanotubes,” J. Biomed. Mater. Res. A, 78 (2006), p. 97.

    PubMed  Google Scholar 

  2. K.S. Brammer et al., “Enhanced Cellular Mobility Guided by Ti02 Nanotube Surfaces,” Nano. Lett., 8 (2008), p. 786.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. K.S. Brammer et al., “Improved Bone-forming Functionality on Diameter-controlled Ti02 Nanotube Surface,” Acta Biomaterialia, 5(8) (2009), pp. 3215–3223.

    Article  CAS  PubMed  Google Scholar 

  4. A.S. Curtis, M. Dalby, and N. Gadegaard, “Cell Signaling Arising from Nanotopography: Implications for Nanomedical Devices,” Nanomed., 1 (2006), p. 67.

    Article  CAS  Google Scholar 

  5. M.J. Dalby et al., “Genomic Expression of Mesenchymal Stem Cells to Altered Nanoscale Topographies,” J. Royal Soc. Interface, 5(26) (2008), pp. 1055–1065.

    Article  Google Scholar 

  6. M.J. Dalby et al., “In vitro Reaction of Endothelial Cells to Polymer Demixed Nanotopography,” Biomaterials, 23 (2001), p. 2945.

    Article  Google Scholar 

  7. J.O. Gallagher et al., “Interaction of Animal Cells with Ordered Nanotopography,” IEEE Trans Nanobloscience, 1 (2002), p. 24.

    Article  CAS  Google Scholar 

  8. J. Park et al., “Nanosize and Vitality: Ti02 Nanotube Diameter Directs Cell Fate,” Nano. Lett., 7 (2007), p. 1686.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. M.J. Dalby, “Nanostructured Surfaces: Cell Engineering and Cell Biology,” Nanomed., 4 (2009), pp. 247–248.

    Article  Google Scholar 

  10. M.J. Dalby et al., “Osteoprogenitor Response to Semi-ordered and Random Nanotopographies,” Biomaterials, 27 (2006), pp. 2980–2987.

    Article  CAS  PubMed  Google Scholar 

  11. M.J. Dalby, D. Pasqui, and S. Affrossman, “Cell Response to Nano-islands Produced by Polymer Demixing: A Brief Review,” IEE Proc. Nanobiotechnol., 151 (2004), pp. 53–61.

    Article  CAS  PubMed  Google Scholar 

  12. M.J. Dalby et al., “Nanotopographical Control of Human Osteoprogenitor Differentiation,” Curr. Stem Cell Res. Then, 2 (2007), pp. 129–138.

    Article  CAS  Google Scholar 

  13. M.J. Dalby et al., “Nanomechanotransduction and Interphase Nuclear Organization Influence on Genomic Control,” J. Cell Biochem., 102 (2007), pp. 1234–1244.

    Article  CAS  PubMed  Google Scholar 

  14. H.E. Prakasam et al., “A New Benchmark for Ti02 Nanotube Array Growth by Anodization,” J. Phys. Chem. C, 111 (2007), pp. 7235–7241.

    Article  CAS  Google Scholar 

  15. S. Prakash et al., Advanced Inorganic Chemistry,Vol. II (New Delhi, India: S. Chand & Co., Ltd., 2005), p. 2.

    Google Scholar 

  16. J. Tao et al., “Mechanism Study of Self-organized Ti02 Nanotube Arrays by Anodization,” New Journal of Chemistry, 32 (2008), p. 2159.

    Article  Google Scholar 

  17. S. Oh et al., “Ti02 Nanotubes for Enhanced Cell and Bone Growth,” Recent Developments in Advanced Medical and Dental Materials Using Electrochemical Methodologies, ed. R.L. Karlinsey (Kerala, India: Research Signpost, 2009), p. 199.

    Google Scholar 

  18. L. Under et al., “Clinical Aspects of Osseointegration in Joint Replacement—A Histological Study of Titanium Implants,” J. Bone Joint Surg. Br., 70 (1988), p. 550.

    Google Scholar 

  19. R.M. Pillar, J,M. Lee, and C. Maniatopoulos, “Observation on the Effect of Movement on Bone Ingrowth into Porous-surfaced Implants,” Clin. Orthop. Rel. Res., 208 (1986), pp. 108–113.

    Google Scholar 

  20. K. Satomi et al., “Bone-implant Interface Structures after Nontapping and Tapping Insertion of Screw-type Titanium Alloy Endosseous Implants,” J. Prosthet. Dent, 59 (1988), p. 339.

    Article  CAS  PubMed  Google Scholar 

  21. S.H. Oh et al., “Growth of Nano-scale Hydroxyapatite using Chemically Treated Titanium Oxide Nanotubes,” Biomaterials, 26 (2005), p. 4938.

    Article  CAS  PubMed  Google Scholar 

  22. L. Ponsonnet et al., “Relationship between Surface Properties (Roughness, Wettability) of Titanium and Titanium Alloys and Cell Behaviour,” Materials Science and Engineering C, 23 (2003), pp. 551–560.

    Article  Google Scholar 

  23. B.D. Boyan et al., “Role of Material Surfaces in Regulating Bone and Cartilage Cell Response,” Biomaterials, 17 (1996), p. 137.

    Article  CAS  PubMed  Google Scholar 

  24. D.E. Ingber, “Cellular Tensegrity: Defining New Rules of Biological Design that Govern the Cytoskeleton,” J. CellSci., 104 (1993), pp. 613–627.

    Google Scholar 

  25. E. Martinez et al., “Effects of Artificial Micro- and Nano-structured Surfaces on Cell Behavior,” Annals of Anatomy, 191 (2009), pp. 126–135.

    Article  CAS  PubMed  Google Scholar 

  26. L.M. Bjursten et al., “Titanium Dioxide Nanotubes Enhance Bone Bonding in vivo,” J. Biomed. Mater. Res., 92(3) (2010), pp. 1218–1224.

    Google Scholar 

  27. S. Oh et al., “Stem Cell Fate Dictated Solely by Altered Nanotube Dimension,” Proc. Natl Acad. Sci. USA, 106(7) (17 Feb 2009), pp. 2130–2135.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. R. McBeath et al., “Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment,” Dev. Cell, 6 (2004), pp. 483–495.

    Article  CAS  PubMed  Google Scholar 

  29. S.A. Ruiz and OS. Chen, “Emergence of Patterned Stem Cell Differentiation within Multicellular Structures,” Stem Cells, 26 (2008), pp. 2921–2927.

    Article  PubMed  Google Scholar 

  30. A.J. Engler et al., “Extracellular Matrix Elasticity Directs Stem Cell Differentiation,” J. Musculoskelet. Neuronal Interact, 7 (2007), p. 335.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungho Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brammer, K.S., Oh, S., Frandsen, C.J. et al. TiO2 nanotube structures for enhanced cell and biological functionality. JOM 62, 50–55 (2010). https://doi.org/10.1007/s11837-010-0059-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0059-x

Keywords

Navigation