Skip to main content
Log in

Spectrométrie de masse en biologie médicale: principes et applications

Mass spectrometry in clinical biology: Principles and applications

  • Mise au Point
  • Published:
Bio tribune magazine

Résumé

La spectrométrie de masse connaît un engouement certain en biologie médicale, ainsi que l’atteste l’abondante littérature qui lui est consacrée. Elle s’implante ainsi dans les laboratoires de biochimie, de pharmacologie médicale et plus récemment de microbiologie. Cette revue reprend les principes de base de la spectrométrie de masse et les grandes stratégies développées. Les applications actuelles et futures seront abordées.

Abstract

Mass spectrometry has become instrumental in medical biology, as attested by an abundant literature, particularly in biochemistry, medical pharmacology and more recently microbiology laboratories. In this review, we will present the basic principles and strategies using mass spectrometry. Current and future applications will then be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Références

  1. Tanaka K, Waki H, Ido Y, et al. (1988) Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2: 151–153

    Article  CAS  Google Scholar 

  2. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60: 2299–2301

    Article  PubMed  CAS  Google Scholar 

  3. Fenn JB, Mann M, Meng CK, et al. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246: 64–71

    Article  PubMed  CAS  Google Scholar 

  4. Cole RB (2000) Some tenets pertaining to electrospray ionization mass spectrometry. J Mass Spectrom 35: 763–772

    Article  PubMed  CAS  Google Scholar 

  5. Zubarev R, Mann M (2007) On the proper use of mass accuracy in proteomics. Mol Cell Proteomics 6: 377–381

    PubMed  CAS  Google Scholar 

  6. Zubarev RA, Hakansson P, Sundqvist B (1996) Accuracy requirements for peptide characterisation by monoisotopic molecular mass measurements. Anal Chem 68: 4060–4063

    Article  CAS  Google Scholar 

  7. Comisarow MB, Marshall AG (1976) Theory of Fourier transform ion cyclotronresonance mass spectroscopy. I. Fundamental equations and low pressure line shape. J Chem Phys 64: 110

    Article  CAS  Google Scholar 

  8. Makarov A (2000) Electrostatic axially harmonic orbital trapping: a highperformance technique of mass analysis. Anal Chem 72: 1156–1162

    Article  PubMed  CAS  Google Scholar 

  9. Dawson JHJ, Guilhaus M (1989) Orthogonal-acceleration time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 3: 155–159

    Article  CAS  Google Scholar 

  10. Gorshkov MV, Zubarev RA (2005) On the accuracy of polypeptide masses measured in a linear ion trap. Rapid Commun Mass Spectrom 19: 3755–3758

    Article  PubMed  CAS  Google Scholar 

  11. Hunt DF, Buko AM, Ballard JM, et al. (1981) Sequence analysis of polypeptides by collision activated dissociation on a triple quadrupole mass spectrometer. Biomed Mass Spectrom 8: 397–408

    Article  PubMed  CAS  Google Scholar 

  12. Papayannopoulos IA (1995) The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass Spectrometry Reviews 14: 49–73

    Article  CAS  Google Scholar 

  13. Johnson RS, Martin SA, Biemann K, et al. (1987) Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine. Anal Chem 59: 2621–2625

    Article  PubMed  CAS  Google Scholar 

  14. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422: 198–207

    Article  PubMed  CAS  Google Scholar 

  15. Jensen ON, Wilm M, Shevchenko A, Mann M (1999) Peptide sequencing of 2-DE gel-isolated proteins by nanoelectrospray tandem mass spectrometry. Methods Mol Biol 112: 571–588

    PubMed  CAS  Google Scholar 

  16. Shevchenko A, Chernushevich I, Wilm M, Mann M (2000) De Novo peptide sequencing by nanoelectrospray tandem mass spectrometry using triple quadrupole and quadrupole/time-of-flight instruments. Methods Mol Biol 146: 1–16

    PubMed  CAS  Google Scholar 

  17. Ceglarek U, Leichtle A, Brugel M, et al. (2009) Challenges and developments in tandem mass spectrometry based clinical metabolomics. Mol Cell Endocrinol 301: 266–271

    Article  PubMed  CAS  Google Scholar 

  18. Kortz L, Helmschrodt C, Ceglarek U (2011) Fast liquid chromatography combined with mass spectrometry for the analysis of metabolites and proteins in human body fluids. Anal Bioanal Chem 399: 2635–2644

    Article  PubMed  CAS  Google Scholar 

  19. Vogeser M, Seger C (2008) A decade of HPLC-MS/MS in the routine clinical laboratory—goals for further developments. Clin Biochem 41: 649–662

    Article  PubMed  CAS  Google Scholar 

  20. Ceglarek U, Kortz L, Leichtle A, et al. (2009) Rapid quantification of steroid patterns in human serum by on-line solid phase extraction combined with liquid chromatography-triple quadrupole linear ion trap mass spectrometry. Clin Chim Acta 401: 114–118

    Article  PubMed  CAS  Google Scholar 

  21. Hood L, Heath JR, Phelps ME, Lin B (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306: 640–643

    Article  PubMed  CAS  Google Scholar 

  22. Tsutsui H, Maeda T, Toyo’oka T, et al. (2010) Practical analytical approach for the identification of biomarker candidates in prediabetic state based upon metabonomic study by ultraperformance liquid chromatography coupled to electrospray ionization time-of-flight mass spectrometry. J Proteome Res 9: 3912–3922

    Article  PubMed  CAS  Google Scholar 

  23. Shigematsu Y, Hata I, Nakai A, et al. (1996) Prenatal diagnosis of organic acidemias based on amniotic fluid levels of acylcarnitines. Pediatr Res 39: 680–684

    Article  PubMed  CAS  Google Scholar 

  24. Kim JY, Park JY, Kim OY, et al. (2010) Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC-Q-TOF MS). J Proteome Res 9: 4368–4375

    Article  PubMed  CAS  Google Scholar 

  25. Lam PM, Marczylo TH, Konje JC (2010) Simultaneous measurement of three N-acylethanolamides in human bio-matrices using ultra performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 398: 2089–2097

    Article  PubMed  CAS  Google Scholar 

  26. Molinaro RJ (2010) Quantitation of argatroban in plasma using liquid chromatography electrospray tandem mass spectrometry (UPLC-ESIMS/MS). Methods Mol Biol 603: 57–63

    Article  PubMed  CAS  Google Scholar 

  27. Blonk MI, van der Nagel BC, Smit LS, Mathot RA (2010) Quantification of levetiracetam in plasma of neonates by ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878: 675–681

    Article  PubMed  CAS  Google Scholar 

  28. Baudin B, Bruneel A (2003) An introduction to proteomics: goals, technical aspects and applications to fundamental biology, drug discovery and clinical chemistry. Recent Res Devel Biophys Biochem 3: 16

    Google Scholar 

  29. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021

    PubMed  Google Scholar 

  30. Ünlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Wiley Subscription Services, Inc., A Wiley Company, pp. 2071–2077

  31. Henzel WJ, Billeci TM, Stults JT, et al. (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A 90: 5011–5015

    Article  PubMed  CAS  Google Scholar 

  32. Mann M, Wilm M (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66: 4390–4399

    Article  PubMed  CAS  Google Scholar 

  33. Santoni V, Molloy M, Rabilloud T (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21: 1054–1070

    Article  PubMed  CAS  Google Scholar 

  34. Chen CD, Wang CS, Huang YH, et al. (2007) Overexpression of CLIC1 in human gastric carcinoma and its clinicopathological significance. Proteomics 7: 155–167

    Article  PubMed  CAS  Google Scholar 

  35. Bouley J, Pionneau C, Varinot J, et al. (2010) Proteomic analysis of BRCA1-depleted cell line reveals a putative role for replication protein A2 up-regulation in BRCA1 breast tumor development. Proteomics Clin Appl 4: 489–498

    PubMed  CAS  Google Scholar 

  36. Bruneel A, Labas V, Mailloux A, et al. (2003) Proteomic study of human umbilical vein endothelial cells in culture. Proteomics 3: 714–723

    Article  PubMed  CAS  Google Scholar 

  37. Hsich G, Kenney K, Gibbs CJ, et al. (1996) The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med 335: 924–930

    Article  PubMed  CAS  Google Scholar 

  38. Rai AJ, Gelfand CA, Haywood BC, et al. (2005) HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5: 3262–3277

    Article  PubMed  CAS  Google Scholar 

  39. Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19: 242–247

    Article  PubMed  CAS  Google Scholar 

  40. Gao M, Zhang J, Deng C, et al. (2006) Novel Strategy of High-Abundance Protein Depletion Using Multidimensional Liquid Chromatography. J Proteome Res 5: 2853–2860

    Article  PubMed  CAS  Google Scholar 

  41. Escoffier P, Paris L, Bodaghi B, et al. (2010) Pooling aqueous humor samples: bias in 2D-LC-MS/MS strategy? J Proteome Res 9: 789–797

    Article  PubMed  CAS  Google Scholar 

  42. Aebersold R (2003) Quantitative proteome analysis: methods and applications. J Infect Dis 187Suppl 2: S315–S320

    Article  PubMed  CAS  Google Scholar 

  43. Zhu Y, Wu R, Sangha N, et al. (2006) Classifications of ovarian cancer tissues by proteomic patterns. Proteomics 6: 5846–5856

    Article  PubMed  CAS  Google Scholar 

  44. Lu Y-T, Han C-L, Wu C-L, et al. (2008) Proteomic profiles of bronchoalveolar lavage fluid from patients with ventilator-associated pneumonia by gel-assisted digestion and 2-D-LC/MS/MS. Proteomic Clin Appl 2: 1208–1222

    Article  CAS  Google Scholar 

  45. Marinach-Patrice C, Feckar A, Brossas JY, et al. (2007) Clinical proteomic: biomarkers of infectious diseases. Médecine et Maladies Infectieuses 37: S8–S10

    Article  Google Scholar 

  46. Mischak H, Apweiler R, Banks RE, et al. (2007) Clinical proteomics: A need to define the field and to begin to set adequate standards. Proteomics Clin Appl 1: 148–156

    Article  PubMed  CAS  Google Scholar 

  47. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24: 971–983

    Article  PubMed  CAS  Google Scholar 

  48. Moshkovskii SA, Vlasova MA, Pyatnitskiy MA, et al. (2007) Acute phase serum amyloid A in ovarian cancer as an important component of proteome diagnostic profiling. Proteomics Clin Appl 1: 107–117

    Article  PubMed  CAS  Google Scholar 

  49. Wang JX, Yu JK, Wang L, et al. (2006) Application of serum protein fingerprint in diagnosis of papillary thyroid carcinoma. Proteomics 6: 5344–5349

    Article  PubMed  CAS  Google Scholar 

  50. Morra R, Munteanu M, Bedossa P, et al. (2007) Diagnostic value of serum protein profiling by SELDI-TOF ProteinChip compared with a biochemical marker, FibroTest, for the diagnosis of advanced fibrosis in patients with chronic hepatitis. Aliment Pharmacol Ther 26: 847–858

    Article  PubMed  CAS  Google Scholar 

  51. Buhimschi IA, Zhao G, Rosenberg VA, et al. (2008) Multidimensional proteomics analysis of amniotic fluid to provide insight into the mechanisms of idiopathic preterm birth. PLoS One 3: e2049

    Article  PubMed  Google Scholar 

  52. Bou Khalil M, Hou W, Zhou H, et al. (2010) Lipidomics era: Accomplishments and challenges. Wiley Subscription Services, Inc., A Wiley Company, 877–929

  53. Emonet S, Shah HN, Cherkaoui A, Schrenzel J (2010) Application and use of various mass spectrometry methods in clinical microbiology. Clin Microbiol Infect 16: 1604–1613

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Marinach-Patrice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinach-Patrice, C., Pionneau, C. & Mazier, D. Spectrométrie de masse en biologie médicale: principes et applications. Bio trib. mag. 40, 4–12 (2011). https://doi.org/10.1007/s11834-011-0061-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11834-011-0061-9

Mots clés

Keywords

Navigation