Skip to main content

Advertisement

Log in

Avantages et inconvénients du dosage de la 25-hydroxyvitamine D par chromatographie liquide couplée à la spectrométrie de masse en tandem (CL-SM/SM)

Strengths and limitations of the measurement of 25-hydroxyvitamin D by liquid chromatography — tandem mass spectrometry (LC-MS/MS)

  • Mise au Point
  • Published:
Bio tribune magazine

Résumé

Avec l’explosion ces dernières années de la demande, a des fins cliniques ou de recherche, de dosage de la 25-hydroxyvitamine D, le choix de la meilleure méthode pour un laboratoire de biologie médicale peut être particulièrement difficile avec le nombre important de méthodes actuellement disponibles. Les immunodosages offrent le meilleur compromis de simplicité, débit d’échantillons, coût et qualité de résultat, mais souffrent de limitations qui font de la CL-SM/SM la technique de référence, bien que plus coûteuse, pour sa flexibilité, sa sensibilité et sa spécificité.

Abstract

Given the dramatic increase, over the last few years, of both routine clinical and research use of the measurement of 25-hydroxyvitamin D, the choice of which is the best method, for an individual clinical laboratory, might be challenging especially given the range of methodologies actually available. Immunoassays offer the best compromise of convenience, high throughput, cost and good result, but also present notable limits that make the LC-MS/MS the gold standard due to its flexibility, sensitivity and specificity, although more expensive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Heaney RP, Horst RL, Cullen DM, et al. (2009) Vitamin D3 distribution and status in the body. J Am Coll Nutr 28: 252–256

    PubMed  CAS  Google Scholar 

  2. Chen TC, Chimeh F, Lu Z, et al. (2007) Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch Biochem Biophys 460: 213–217

    Article  PubMed  CAS  Google Scholar 

  3. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357: 266–281

    Article  PubMed  CAS  Google Scholar 

  4. Seamans KM, Cashman KD (2009) Existing and potentially novel functional markers of vitamin D status: a systematic review. Am J Clin Nutr 89: 1997S–2008S

    Article  PubMed  CAS  Google Scholar 

  5. Zerwekh JE (2008) Blood biomarkers of vitamin D status. Am J Clin Nutr 87: 1087S–1091S

    PubMed  CAS  Google Scholar 

  6. Hollis BW, Horst RL (2007) The assessment of circulating 25(OH)D and 1,25(OH)2D: where we are and where we are going. J Steroid Biochem Mol Biol 103: 473–476

    Article  PubMed  CAS  Google Scholar 

  7. Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22: 477–501

    Article  PubMed  CAS  Google Scholar 

  8. Ooms ME, Lips P, Roos JC, et al. (1995) Vitamin D status and sex hormone binding globulin: determinants of bone turnover and bone mineral density in elderly women. J Bone Miner Res 10: 1177–1184

    Article  PubMed  CAS  Google Scholar 

  9. Wang S (2009) Epidemiology of vitamin D in health and disease. Nutr Res Rev 22: 188–203

    Article  PubMed  CAS  Google Scholar 

  10. Kulie T, Groff A, Redmer J, et al. (2009) Vitamin D: an evidence-based review. J Am Board Fam Med 22: 698–706

    Article  PubMed  Google Scholar 

  11. Bischoff-Ferrari HA, Giovannucci E, Willett WC, et al. (2006) Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 84: 18–28

    PubMed  CAS  Google Scholar 

  12. Hollis BW (2000) Comparison of commercially available (125)I-based RIA methods for the determination of circulating 25-hydroxyvitamin D. Clin Chem 46: 1657–1661

    PubMed  CAS  Google Scholar 

  13. Glendenning P, Taranto M, Noble JM, et al. (2006) Current assays overestimate 25-hydroxyvitamin D3 and underestimate 25-hydroxyvitamin D2 compared with HPLC: need for assay-specific decision limits and metabolite-specific assays. Ann Clin Biochem 43: 23–30

    Article  PubMed  CAS  Google Scholar 

  14. Ersfeld DL, Rao DS, Body JJ, et al. (2004) Analytical and clinical validation of the 25 OH vitamin D assay for the LIAISON automated analyzer. Clin Biochem 37: 867–874

    Article  PubMed  CAS  Google Scholar 

  15. Turpeinen U, Hohenthal U, Stenman UH (2003) Determination of 25-hydroxyvitamin D in serum by HPLC and immunoassay. Clin Chem 49: 1521–1524

    Article  PubMed  CAS  Google Scholar 

  16. Roth HJ, Schmidt-Gayk H, Weber H, et al. (2008) Accuracy and clinical implications of seven 25-hydroxyvitamin D methods compared with liquid chromatography-tandem mass spectrometry as a reference. Ann Clin Biochem 45: 153–159

    Article  PubMed  CAS  Google Scholar 

  17. Hypponen E, Turner S, Cumberland P, et al. (2007) Serum 25-hydroxyvitamin D measurement in a large population survey with statistical harmonization of assay variation to an international standard. J Clin Endocrinol Metab 92: 4615–4622

    Article  PubMed  CAS  Google Scholar 

  18. Souberbielle JC, Fayol V, Sault C, et al. (2005) Assay-specific decision limits for two new automated parathyroid hormone and 25-hydroxyvitamin D assays. Clin Chem 51: 395–400

    Article  PubMed  CAS  Google Scholar 

  19. Yeung B, Vouros P, Reddy GS (1993) Characterization of vitamin D3 metabolites using continuous-flow fast atom bombardment tandem mass spectrometry and high-performance liquid chromatography. J Chromatogr 645: 115–123

    Article  PubMed  CAS  Google Scholar 

  20. Vreeken RJ, Honing M, van Baar BL et al. (1993) On-line post-column Diels-Alder derivatization for the determination of vitamin D3 and its metabolites by liquid chromatography/thermospray mass spectrometry. Biol Mass Spectrom 22: 621–632

    Article  PubMed  CAS  Google Scholar 

  21. Higashi T, Awada D, Shimada K (2001) Simultaneous determination of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in human plasma by liquid chromatography-tandem mass spectrometry employing derivatization with a Cookson-type reagent. Biol Pharm Bull 24: 738–743

    Article  PubMed  CAS  Google Scholar 

  22. Chen H, McCoy LF, Schleicher RL, et al. (2008) Measurement of 25-hydroxyvitamin D3 (25OHD3) and 25-hydroxyvitamin D2 (25OHD2) in human serum using liquid chromatography-tandem mass spectrometry and its comparison to a radioimmunoassay method. Clin Chim Acta 391: 6–12

    Article  PubMed  CAS  Google Scholar 

  23. Vogeser M, Kyriatsoulis A, Huber E, et al. (2004) Candidate reference method for the quantification of circulating 25-hydroxyvitamin D3 by liquid chromatography-tandem mass spectrometry. Clin Chem 50: 1415–1417

    Article  PubMed  CAS  Google Scholar 

  24. Knox S, Harris J, Calton L, et al. (2009) A simple automated solid-phase extraction procedure for measurement of 25-hydroxyvitamin D3 and D2 by liquid chromatography-tandem mass spectrometry. Ann Clin Biochem 46: 226–230

    Article  PubMed  CAS  Google Scholar 

  25. Tsugawa N, Suhara Y, Kamao M, et al. (2005) Determination of 5-hydroxyvitamin D in human plasma using high-performance liquid chromatography-tandem mass spectrometry. Anal Chem 77: 3001–3007

    Article  PubMed  CAS  Google Scholar 

  26. Maunsell Z, Wright DJ, Rainbow SJ (2005) Routine isotope-dilution liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of the 25-hydroxy metabolites of vitamins D2 and D3. Clin Chem 51: 1683–1690

    Article  PubMed  CAS  Google Scholar 

  27. Saenger AK, Laha TJ, Bremner DE, et al. (2006) Quantification of serum 25-hydroxyvitamin D(2) and D(3) using HPLC-tandem mass spectrometry and examination of reference intervals for diagnosis of vitamin D deficiency. Am J Clin Pathol 125: 914–920

    Article  PubMed  CAS  Google Scholar 

  28. Bunch DR, Miller AY, Wang S (2009) Development and validation of a liquid chromatography-tandem mass spectrometry assay for serum 25-hydroxyvitamin D2/D3 using a turbulent flow online extraction technology. Clin Chem Lab Med 47: 1565–1572

    Article  PubMed  CAS  Google Scholar 

  29. Carter GD, Carter R, Jones J, et al. (2004) How accurate are assays for 25-hydroxyvitamin D? Data from the international vitamin D external quality assessment scheme. Clin Chem 50: 2195–2197

    Article  PubMed  CAS  Google Scholar 

  30. Binkley N, Krueger D, Cowgill CS, et al. (2004) Assay variation confounds the diagnosis of hypovitaminosis D: a call for standardization. J Clin Endocrinol Metab 89: 3152–3157

    Article  PubMed  CAS  Google Scholar 

  31. Carter GD, Jones JC (2009) Use of a common standard improves the performance of liquid chromatography-tandem mass spectrometry methods for serum 25-hydroxyvitamin-D. Ann Clin Biochem 46: 79–81

    Article  PubMed  CAS  Google Scholar 

  32. Fraser WD (2009) Standardization of vitamin D assays: art or science? Ann Clin Biochem 46: 3–4

    Article  PubMed  Google Scholar 

  33. Blocki J, Fenske J, Bobba G, et al. (2009) Measurement of 25OHD spiked serum samples have no clinical relevance. In Proceedings of the 14th Workshop on Vitamin D

  34. Horst R (2009) Exogenous vs. endogenous recovery of 25-hydroxyvitamin D2 and D3 in human samples using HPLC and the Diasorin Liaison Total D assay. In Proceedings of the 14th Workshop on Vitamin D

  35. Carter GD, Jones JC, Berry JL (2007) The anomalous behaviour of exogenous 25-hydroxyvitamin D in competitive binding assays. J Steroid Biochem Mol Biol 103: 480–482

    Article  PubMed  CAS  Google Scholar 

  36. Binkley N (2006) Vitamin D: clinical measurement and use. J Musculoskelet Neuronal Interact 6: 338–340

    PubMed  CAS  Google Scholar 

  37. Hollis BW (2008) Assessment of vitamin D status and definition of a normal circulating range of 25-hydroxyvitamin D. Curr Opin Endocrinol Diabetes Obes 15: 489–494

    Article  PubMed  CAS  Google Scholar 

  38. Costelloe SJ, Woolman E, Rainbow S, et al. (2009) Is high-throughput measurement of 25-hydroxyvitamin D3 without 25-hydroxyvitamin D2 appropriate for routine clinical use? Ann Clin Biochem 46: 86–87; author reply 87–8

    Article  PubMed  CAS  Google Scholar 

  39. Vieth R (2000) Problems with direct 25-hydroxyvitamin D assays, and the target amount of vitamin D nutrition desirable for patients with osteoporosis. Osteoporos Int 11: 635–636

    Article  PubMed  CAS  Google Scholar 

  40. Aronov PA, Hall LM, Dettmer K, et al. (2008) Metabolic profiling of major vitamin D metabolites using Diels-Alder derivatization and ultra-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 391: 1917–1930

    Article  PubMed  CAS  Google Scholar 

  41. Priego Capote F, Jimenez JR, Granados JM, et al. (2007) Identification and determination of fat-soluble vitamins and metabolites in human serum by liquid chromatography/triple quadrupole mass spectrometry with multiple reaction monitoring. Rapid Commun Mass Spectrom 21: 1745–1754

    Article  PubMed  Google Scholar 

  42. Beastall G, Rainbow S (2008) Vitamin D reinvented: implications for clinical chemistry. Clin Chem 54: 630–632

    Article  PubMed  CAS  Google Scholar 

  43. Elder PA, Lewis JG, King RI, et al. (2009) An anomalous result from gel tubes for vitamin D. Clin Chim Acta 410: 95

    Article  PubMed  CAS  Google Scholar 

  44. Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49: 1041–1044

    Article  PubMed  CAS  Google Scholar 

  45. Kamao M, Tsugawa N, Suhara Y, et al. (2007) Quantification of fatsoluble vitamins in human breast milk by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 859: 192–200

    Article  PubMed  CAS  Google Scholar 

  46. Higashi T, Shibayama Y, Fuji M, et al. (2008) Liquid chromatographytandem mass spectrometric method for the determination of salivary 25-hydroxyvitamin D3: a noninvasive tool for the assessment of vitamin D status. Anal Bioanal Chem 391: 229–238

    Article  PubMed  CAS  Google Scholar 

  47. Holmoy T, Moen SM, Gundersen TA, et al. (2009) 25-hydroxyvitamin D in cerebrospinal fluid during relapse and remission of multiple sclerosis. Mult Scler 15: 1280–1285

    Article  PubMed  Google Scholar 

  48. Newman MS, Brandon TR, Groves MN, et al. (2009) A liquid chromatography/tandem mass spectrometry method for determination of 25-hydroxy vitamin d(2) and 25-hydroxy vitamin d(3) in dried blood spots: a potential adjunct to diabetes and cardiometabolic risk screening. J Diabetes Sci Technol 3: 156–162

    PubMed  Google Scholar 

  49. Wootton AM (2005) Improving the measurement of 25-hydroxyvitamin D. Clin Biochem Rev 26: 33–36

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fonsart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonsart, J., Souletie, I. & Gourmel, B. Avantages et inconvénients du dosage de la 25-hydroxyvitamine D par chromatographie liquide couplée à la spectrométrie de masse en tandem (CL-SM/SM). Bio trib. mag. 39, 19–28 (2011). https://doi.org/10.1007/s11834-011-0054-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11834-011-0054-8

Mots clés

Keywords

Navigation