Skip to main content
Log in

Meshfree Methods in Geohazards Prevention: A Survey

  • Survey article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Geohazards, including the landslide, debris flow, rockfall, surface collapse, surface subsidence, and surface cracks, can bring great threats to human life and property. Generally, the defromation and failure of rock and soil masses can induce geohazards. To effectively predict and prevent geohazards, it is significant to capture the deformation and failure characteristics of rock and soil masses occurring in geohazards. Numerical modeling methods have been widely used to investigate the deformation and failure of rock and soil masses due to their low cost and convenience. Commonly, meshfree methods can be used to model the large deformation and failure characteristics of rock and soil masses without mesh-dependence. In this paper, we aim to provide a survey of related applications in modeling the deformation and failure of rock and soil masses occurring in common geohazards by using four frequently-used meshfree methods, including Smoothed Particle Hydrodynamics (SPH), Material Point Method (MPM), Discrete Element Method (DEM), and Discontinuous Deformation Analysis (DDA). Moreover, the capabilities, key issues, and outlook of the surveyed meshfree methods in the deformation and failure simulation of rock and soil masses are discussed. This paper provides a reference for geohazards prevention from the perspective of modeling the deformation and failure of rock and soil masses using meshfree methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

3DEC:

3 Dimension Distinct Element Code

AHSM:

Analogous Hyperbola Subsidence Model

ALE:

Arbitrary Lagrangian-Eulerian method

API:

Application Program Interface

ASPH:

Adaptive Smoothed Particle Hydrodynamics

BP:

Back Propagation

BPM:

Bonded-Particle Model

CFD:

Computational Fluid Dynamics

CPU:

Central Processing Unit

CPDI:

Convected Particles Domain Interpolation

CSPH:

Corrected Smoothed Particle Hydrodynamics

DAMPM:

Depth Average Material Point Method

DDA:

Discontinuous Deformation Analysis

DDA-SSR:

Shear Strength Reduction with DDA

DEM:

Discrete Element Method

DSPH:

Discrete Smoothed Particle Hydrodynamics

EDMM:

Equivalent Discontinuous Modeling Method

EJRM:

Equivalent Jointed Rock-mass Model

FDM:

Finite Difference Method

FEM:

Finite Element Method

FLIP:

Fluid Implicit Particle

GIMPM:

Generalized Interpolation Material Point Method

GPU:

Graphics Processing Unit

HBP:

Herschel-Bulkley-Papanastasiou Model

L-GSM:

Lagrangian Gradient Smoothing Method

MAM:

Multiplex Acceleration Model

MPM:

Material Point Method

MUSL:

Modified Update Stress Last

NWW:

North-West-West

PFC2D/3D:

Particle Flow Code 2D/3D

RSPH:

Regularized Smoothed Particle Hydrodynamics

SPH:

Smoothed Particle Hydrodynamics

UDEC:

Universal Distinct Element Code

USF:

Update Stress First

USL:

Update Stress Last

References

  1. Yin YP (2001) A review and vision of geological hazards in China. Manag Geol Sci Technol 18(3):26–29

    Google Scholar 

  2. Yin Y, Wang F, Ping S (2009) Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan China. Landslides 6(2):139–152

    Google Scholar 

  3. Xu N, Mei Gang, Qin Jiayu, Wang Bowen, Qi Pian (2020) A survey of internet of things (IoT) for geohazard prevention: applications, technologies, and challenges. IEEE Int Things J 7(5):4371–4386

    Google Scholar 

  4. Ding H, Sun LS, Wang JL, Wang X (2014) Design and realization of 3S technology-based geological disaster database system in liaoning province. Appl Mech Mater 580–583:2708–2712

    Google Scholar 

  5. Ding K, Ma F, Guo J, Zhao H, Lu R, Liu F (2018) Investigation of the mechanism of roof caving in the Jinchuan nickel mine China. Rock Mech Rock Eng 51(4):1215–1226

    Google Scholar 

  6. White DJ (2008) Contributions to geotechnique 1948–2008: physical modelling. Geotechnique 58(5):413–421

    Google Scholar 

  7. Zhu C, He M, Karakus M, Cui X, Tao Z (2020) Investigating toppling failure mechanism of anti-dip layered slope due to excavation by physical modelling. Rock Mechan Rock Eng 53(11):5029–5050

    Google Scholar 

  8. Lo SH, Wu D, Sze KY (2010) Adaptive meshing and analysis using transitional quadrilateral and hexahedral elements. Finite Element Anal Design 46(1–2):2–16

    MathSciNet  Google Scholar 

  9. Rodriguez JJ, Power H (2001) h-adaptive mesh refinement strategy for the boundary element method based on local error analysis. Eng Anal Bound Elements 25(7):565–579

    MATH  Google Scholar 

  10. Zienkiewicz OC, Taylor RL, Nithiarasu P (2013) The finite element method for fluid dynamics. Elsevier Butterworth-Heinemann, UK

    MATH  Google Scholar 

  11. Donea J, Huerta A, Ponthot JP and A. (2004) American Cancer Society, Rodríguez-Ferran. Arbitrary lagrangian-eulerian methods

  12. Mair HU (2014) Review: hydrocodes for structural response to underwater explosions. Shock Vibration 6(2):81

    Google Scholar 

  13. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Google Scholar 

  14. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientifi

  15. Liu MB, Liu GR, Zong Z (2008) An overview on smoothed particle hydrodynamics. Int J Comput Method 5(1):135–188

    MathSciNet  MATH  Google Scholar 

  16. Chen JK, Beraun JE (2000) A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput Method Appl Mech Eng 190(1/2):225–239

    MATH  Google Scholar 

  17. Sulsky D, Schreyer HL (1996) Axisymmetric form of the material point method with applications to upsetting and taylor impact problems. Comput Method Appl Mech Eng 139(1–4):409–429

    MATH  Google Scholar 

  18. Brackbill JU, Ruppel HM (1986) Flip: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J Comput Phys 65(2):314–343

    MathSciNet  MATH  Google Scholar 

  19. Beuth L, Wiȩckowski Z, Vermeer PA (2010) Solution of quasi-static large-strain problems by the material point method. Int J Num Anal Method Geomech 35:1451–1465

    Google Scholar 

  20. Sulsky Deborah, Zhou Shi-Jian, Schreyer Howard L (1995) Application of particle-in-cell method to solid mechanics. Comput Phys Commun 87(1–2):236–252

    MATH  Google Scholar 

  21. Fern James, Rohe Alexander, Soga Kenichi (2019) The material point method for geotechnical engineering: A practical. CRC Press

  22. Xiong Z, Lian Y, Yan L, Xu Z (2013) Material point method. Tsinghua University Press

  23. Bardenhagen SG, Kober EM (2004) The generalized interpolation material point method. Comput Model Eng Sci 5(6):477–495

    Google Scholar 

  24. Strack PCO (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Google Scholar 

  25. Shi G, Goodman R (1985) Two dimensional discontinuous deformation analysis. Int J Numer Anal Method Geomech 9(6):541–556

    MATH  Google Scholar 

  26. Shi G, Goodman R (1989) Generalization of two-dimensional discontinuous deformation analysis for forward modeling. Int J Numer Anal Method Geomech 13(4):359–380

    MATH  Google Scholar 

  27. Shi G (1988) Discontinuous deformation analysis: a new numerical model for the statics and dynamics of block systems. University of California, Berkeley

    Google Scholar 

  28. Fang MZ (2001) Modeling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis (DDA) method. Int J Rock Mechan Mining Sci 38(3):343–355

    Google Scholar 

  29. Huang Y, Zhang W, Xu Q, Xie P, Hao L, 2012 Run-out analysis of flow-like landslides triggered by the Ms 8.0, (2008) Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 9(2):275–283

    Google Scholar 

  30. Hu M, Liu MB, Xie MW, Liu GR (2015) Three-dimensional run-out analysis and prediction of flow-like landslides using smoothed particle hydrodynamics. Environ Earth Sci 73(4):1629–1640

    Google Scholar 

  31. Dai Z, Huang Y, Cheng H, Xu Q (2014) 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake. Eng Geol 180:21–33

    Google Scholar 

  32. An Y, Wu Q, Shi C, Liu Q (2016) Three-dimensional smoothed-particle hydrodynamics simulation of deformation characteristics in slope failure. Geotechnique 66(8):670–680

    Google Scholar 

  33. Haddad B, Pastor M, Palacios D, Munoz-Salinas E (2010) A SPH depth integrated model for popocatepetl 2001 lahar (Mexico): sensitivity analysis and runout simulation. Eng Geol 114(3–4):312–329

    Google Scholar 

  34. Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Method Geomech 33(2):143–72

    MATH  Google Scholar 

  35. Pastor M, Blanc T, Haddad B, Petrone S, Sanchez Morles M, Drempetic V, Issler D, Crosta GB, Cascini L, Sorbino G (2014) Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 11(5):793–812

    Google Scholar 

  36. Hungr Oldrich (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canad Geotechn J 32:610–623

    Google Scholar 

  37. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int J Numer Anal Method Geomech 32(12):1537–1570

    MATH  Google Scholar 

  38. Chen W, Qiu T (2013) Simulation of earthquake-induced slope deformation using SPH method. Int J Numer Anal Method Geomech 38(3):297–330

    Google Scholar 

  39. Huang Y, Dai Z (2014) Large deformation and failure simulations for geo-disasters using smoothed particle hydrodynamics method. Eng Geol 168:168

    Google Scholar 

  40. Zhang W, Xiao D (2019) Numerical analysis of the effect of strength parameters on the large-deformation flow process of earthquake-induced landslides. Eng Geol 260:105239

    Google Scholar 

  41. Domnik B, Pudasaini SP (2012) Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations. J Non-Newton Fluid Mechan 173:72–86

    Google Scholar 

  42. Yu M, Huang Y, Deng W, Cheng H (2018) Forecasting landslide mobility using an SPH model and ring shear strength tests: a case study. Nat Hazards Earth Syst Sci 18:3343–3353

    Google Scholar 

  43. Calvo L, Haddad B, Pastor M, Palacios D (2015) Runout and deposit morphology of bingham fluid as a function of initial volume: implication for debris flow modelling. Nat Hazard 75(1):489–513

    Google Scholar 

  44. Wang W, Chen G, Han Z, Zhou S, Zhang H, Jing P (2016) 3D numerical simulation of debris-flow motion using SPH method incorporating non-Newtonian fluid behavior. Nat Hazard 81(3):1981–1998

    Google Scholar 

  45. Pasculli A, Minatti L, Sciarra N, Paris E (2013) SPH modeling of fast muddy debris flow: numerical and experimental comparison of certain commonly utilized approaches. Italian J Geosci 132(3):350–365

    Google Scholar 

  46. Pastor M, Yague A, Stickle MM, Manzanal D, Mira P (2018) A two-phase SPH model for debris flow propagation. Int J Numer Anal Method Geomech 42(3):418–448

    Google Scholar 

  47. Pastor M, Blanc T, Pastor MJ (2009) A depth-integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures: application to fast catastrophic landslides. J NonNewt Fluid Mech 158(1–3):142–153

    MATH  Google Scholar 

  48. Han Z, Bin S, Yange L, Wang W, Huang J, Chen G (2019) Numerical simulation of debris-flow behavior based on the SPH method incorporating the Herschel-Bulkley-Papanastasiou rheology model. Eng Geol 255:26–36

    Google Scholar 

  49. Fukagawa R, Sako K, Bui HH, Wells JC (2011) Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH). Geotechnique 61(7):565–574

    Google Scholar 

  50. Peng C, Wu W, Yu HS, Wang C (2015) A SPH approach for large deformation analysis with hypoplastic constitutive model. Acta Geotech 10(6):703–717

    Google Scholar 

  51. Bao Y, Huang Y, Liu GR, Wang G (2018) SPH simulation of high-volume rapid landslides triggered by earthquakes based on a unified constitutive model. Part I: Initiation process and slope failure. Int J Comput Method 17(4):1850150

    MathSciNet  MATH  Google Scholar 

  52. Bao Y, Huang Y, Liu GR, Zeng W (2020) SPH simulation of high-Volume rapid landslides triggered by earthquakes based on a unified constitutive model Part II: solid-Liquid-Like phase transition and flow-Like landslides. Int J Comput Method 17(4):1850149

    MathSciNet  MATH  Google Scholar 

  53. Mao Z, Liu G, Huang Y, Bao Y. (2019) A conservative and consistent lagrangian gradient smoothing method for earthquake-induced landslide simulation. Eng Geol 260:105226

    Google Scholar 

  54. Hu M, Liu Q, Wu F, Yu M, Jiang S (2018) GIS enabled SPH-soil modeling for the post-failure flow of landslides under seismic loadings. Int J Comput Method 15(6):105226

    MathSciNet  MATH  Google Scholar 

  55. Bui HH, Fukagawa R (2013) An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: Case of hydrostatic pore-water pressure. Int J Numer Anal Method Geomech 37(1):31–50

    Google Scholar 

  56. Zhang W, Maeda K, Saito H, Li Z, Huang Y (2016) Numerical analysis on seepage failures of dike due to water level-up and rainfall using a water-soil-coupled smoothed particle hydrodynamics model. Acta Geotech 11(6):1401–1418

    Google Scholar 

  57. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    MATH  Google Scholar 

  58. Morris JP, Fox PJ, Yi Z (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226

    MATH  Google Scholar 

  59. Allahdadi FA, Carney TC, Hipp JR, Libersky LD, Petschek AG (1993) High strain lagrangian hydrodynamics: a threedimensional SPH code for dynamic material response. J Comput Phys 109(1):67–75

    MATH  Google Scholar 

  60. Yildiz M, Rook RA, Suleman A (2010) SPH with the multiple boundary tangent method. Int J Numer Method Eng 77(10):1416–1438

    MathSciNet  MATH  Google Scholar 

  61. Gomez-Gesteira M, Rogers BD, Dalrymple Robert A, Crespo Alex J.C. (2010) State-of-the-art of classical SPH for free-surface flows. J Hydraul Res 48(S1):6–27

    Google Scholar 

  62. Adami S, Hu XY, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231(21):7057–7075

    MathSciNet  Google Scholar 

  63. Crespo AJC, Gomez-Gesteira M, Dalrymple RA (2007) Boundary conditions generated by dynamic particles in SPH methods. Comput Mater Continua 5:173–184

    MathSciNet  MATH  Google Scholar 

  64. Campbell J, Vignjevic R, Libersky L (2000) A contact algorithm for smoothed particle hydrodynamics. Comput Method Appl Mech Eng 184(1):49–65

    MathSciNet  MATH  Google Scholar 

  65. Eghtesad A, Shafiei AR, Mahzoon M (2012) A new fluid-solid interface algorithm for simulating fluid structure problems in FGM plates. J Fluids Struct 30:141–158

    Google Scholar 

  66. Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159:290–311

    MATH  Google Scholar 

  67. Bonet J, Kulasegaram S (2001) Remarks on tension instability of eulerian and lagrangian corrected smooth particle hydrodynamics (CSPH) methods. Int J Numeri Method Eng 52(11):1203–1220

    MATH  Google Scholar 

  68. Dyka CT, Randles PW, Ingel RP (1997) Stress points for tension instability in SPH. Int J Numer Method Eng 40(13):2325–2341

    MATH  Google Scholar 

  69. Randles PW, Libersky LD (2000) Normalized SPH with stress points. Int J Numer Method Eng 48(10):1445–1462

    MATH  Google Scholar 

  70. Randles PW, Libersky LD (2005) Boundary conditions for a dual particle method. Comput Struct 83(17–18):1476–1486

    Google Scholar 

  71. Liu GR, Xu GX (2008) A gradient smoothing method (GSM) for fluid dynamics problems. Int J Numer Method Eng 58(10):1101–1133

    MATH  Google Scholar 

  72. Ray R, Deb K, Shaw A (2019) Pseudo-spring smoothed particle hydrodynamics (SPH) based computational model for slope failure. Eng Anal Bound Element 101:139–148

    MathSciNet  MATH  Google Scholar 

  73. Cuomo S, Pastor M, Capobianco V, Cascini L (2016) Modelling the space-time evolution of bed entrainment for flow-like landslides. Eng Geol 212:10–20

    Google Scholar 

  74. Braun A, Cuomo S, Petrosino S, Wang X, Zhang L (2018) Numerical SPH analysis of debris flow run-out and related river damming scenarios for a local case study in SW China. Landslides 15(3):535–550

    Google Scholar 

  75. Rahman MA, Konagai K (2017) Substantiation of debris flow velocity from super-elevation: a numerical approach. Landslides 14(2):633–647

    Google Scholar 

  76. Hungr O, Mcdougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35(5):978–992

    Google Scholar 

  77. Qiang Xu, Hualin Cheng, Huang Yu, Dai Zili (2017) SPH model for fluid-structure interaction and its application to debris flow impact estimation. Landslides 14(3):917–928

    Google Scholar 

  78. Laigle D, Lachamp P, Naaim M (2007) SPH-based numerical investigation of mudflow and other complex fluid flow interactions with structures. Comput Geosci 11(4):297–306

    MATH  Google Scholar 

  79. Zienkiewicz OC, Shiomi T (1984) Dynamic behaviour of saturated porous media: the generalized biot formulation and its numerical solution. Int J Numer Anal Method Geomech 8:71–96

    MATH  Google Scholar 

  80. Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 1. coulomb mixture theory. J Geophys Res Solid Earth 106:537–552

    Google Scholar 

  81. Pitman EB, Le L (2006) A two-fluid model for avalanche and debris flows. PhilosTrans 363:1573–1601

    MathSciNet  MATH  Google Scholar 

  82. Pudasaini SP (2012) A general two-phase debris flow model. J Geophys Res Atmos 117(F3):3010

    Google Scholar 

  83. Prime N, Dufour F, Darve F (2012) Unified model for geomaterial solid/fluid states and the transition in between. J Eng Mech 140(6):04014031

    Google Scholar 

  84. Pastor M, Blanc T, Haddad B, Drempetic V, Morles MS, Dutto P, Stickle MM, Mira P, Merodo JAF (2015) Depth averaged models for fast landslide propagation: mathematical, rheological and numerical aspects. Arch Comput Method Eng 22(1):67–104

    MathSciNet  MATH  Google Scholar 

  85. Liang H, He S, Chen Z, Liu W (2019) Modified two-phase dilatancy SPH model for saturated sand column collapse simulations. Eng Geol 260:105219

    Google Scholar 

  86. R Jackson. (2001) The dynamics of fluidized particles. Meas Sci Technol, 12(6)

  87. Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Method Geomech 33(2):143–172

    MATH  Google Scholar 

  88. Pastor M, Tayyebi SM, Stickle MM, Yagüe N, Manzanal D (2021) A depth integrated, coupled, two-phase model for debris flow propagation. Acta Geotechn 2:1–25

    Google Scholar 

  89. Tayyebi SM, Pastor M, Stickle MM (2021) Two-phase SPH numerical study of pore-water pressure effect on debris flows mobility: Yu tung debris flow. Comput Geotech 132:103973

    Google Scholar 

  90. Ono Y, Nakase H, Iwamoto T (2018) SPH simulation for large deformation of ground surface caused by faulting. J Earthq Tsunami 12(04):1841004

    Google Scholar 

  91. Karekal S, Das R, Mosse L, Cleary PW (2011) Application of a mesh-free continuum method for simulation of rock caving processes. Int J Rock Mech Min Sci 48(5):703–711

    Google Scholar 

  92. Wieckowski Z (2004) The material point method in large strain engineering problems. Comput Method Appl Mech Eng 193(39–41):4417–4438

    MATH  Google Scholar 

  93. Yerro A, Alonso E, Pinyol N (2013) The material point method: a promising computational tool in geotechnics. Chall Innov Geotech 1:853–856

    Google Scholar 

  94. Sulsky D, Chen Z, Schreyer HL (1994) Particle method for history-dependent materials. Comput Method Appl Mech Eng 118:176–196

    MathSciNet  MATH  Google Scholar 

  95. A Verruijt. 2010 An introduction to soil dynamics

  96. Zabala Francisco, Alonso EE (2011) Progressive failure of aznalcollar dam using the material point method. Geotechnique 61(9):795–808

    Google Scholar 

  97. Jassim I, Stolle D, Vermeer P (2013) Two-phase dynamic analysis by material point method. Int J Numer Anal Method Geomech 37(15):2502–2522

    Google Scholar 

  98. Wang B, Vardon PJ, Hicks MA (2016) Investigation of retrogressive and progressive slope failure mechanisms using the material point method. Comput Geotech 78:88–98

    Google Scholar 

  99. Yerro A, Soga K, Bray JD (2019) Runout evaluation of Oso landslide with the material point method. Canad Geotech J 56(9):1304–1317

    Google Scholar 

  100. Yerro A, Soga K, Bray JD (2019) Post-failure stage simulation of a landslide using the material point method. Eng Geol 253:149–159. https://doi.org/10.1139/cgj-2017-0630

    Article  Google Scholar 

  101. Llano-Serna MA, Farias MM, Pedroso DM (2016) An assessment of the material point method for modelling large scale run-out processes in landslides. Landslides 13(5):1057–1066

    Google Scholar 

  102. Soga K, Alonso E, Yerro A, Kumar K, Bandara S (2016) Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66(3):248–273

    Google Scholar 

  103. Huang P, Li SL, Guo H, Hao ZM (2015) Large deformation failure analysis of the soil slope based on the material point method. Comput Geosci 19(4):951–963

    MathSciNet  MATH  Google Scholar 

  104. Yerro A, Alonso EE, Pinyol NM (2016) Run-out of landslides in brittle soils. Comput Geotech 80:427–439

    Google Scholar 

  105. Yerro A, Pinyol NM, Alonso EE (2016) Internal progressive failure in deep-seated landslides. Rock Mech Rock Eng 49(6):2317–2332

    Google Scholar 

  106. Cuomo S, Ghasemi P, Martinelli M, Calvello M (2019) Simulation of liquefaction and retrogressive slope failure in loose coarse-grained material. Int J Geomech 19(10):04019116

    Google Scholar 

  107. Shi B, Zhang Y, Zhang W (2019) Run-out of the 2015 shenzhen landslide using the material point method with the softening model. Bull Eng Geol Environ 78(2):1225–1236

    Google Scholar 

  108. Liu X, Wang Y, Li DQ (2019) Investigation of slope failure mode evolution during large deformation in spatially variable soils by random limit equilibrium and material point methods. Comput Geotech 111:301–312

    Google Scholar 

  109. He M, Sousa LRE, Müller A, Vargas E, Gong W (2019) Numerical and safety considerations about the Daguangbao landslide induced by the 2008 Wenchuan earthquake. J Rock Mech Geotech Eng 11(5):1019–1035

    Google Scholar 

  110. Bhandari T, Hamad F, Moormann C, Sharma KG, Westrich B (2016) Numerical modelling of seismic slope failure using MPM. Comput Geotech 75:126–134

    Google Scholar 

  111. Hamad F, Stolle D, Moormann C (2016) Material point modelling of releasing geocontainers from a barge. Geotext Geomembr 44(3):308–318

    Google Scholar 

  112. Abe K, Nakamura S, Nakamura H, Shiomi K (2017) Numerical study on dynamic behavior of slope models including weak layers from deformation to failure using material point method. Soils Found 57(2):155–175

    Google Scholar 

  113. Zhang HW, Wang KP, Chen Z (2009) Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies. Comput Method Appl Mech Eng 198(17–20):1456–1472

    MATH  Google Scholar 

  114. Wang B, Vardon PJ, Hicks MA (2018) Rainfall-induced slope collapse with coupled material point method. Eng Geol 239:1–12

    Google Scholar 

  115. Troncone A, Conte E, Pugliese L (2019) Analysis of the slope response to an increase in pore water pressure using the material point method. Water 11(7):1446

    Google Scholar 

  116. Bandara S, Ferrari A, Laloui L (2016) Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method. Int J Numer Anal Method Geomech 40(9):1358–1380

    Google Scholar 

  117. Alonso EE, Pinyol MN, Yerro A (2015) The material point method for unsaturated soils. Geotechnique 65(3):201–217

    Google Scholar 

  118. Bandara S, Soga K (2015) Coupling of soil deformation and pore fluid flow using material point method. Comput Geotech 63:199–214

    Google Scholar 

  119. Abe K, Soga K, Bandara S (2014) Material point method for coupled hydromechanical problems. J Geotech Geoenviron Eng 140(3):04013033

    Google Scholar 

  120. Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498

    MathSciNet  MATH  Google Scholar 

  121. Martinelli M, Rohe A, Soga K (2017) Modeling dike failure using the material point method. Proc Eng 175:341–348

    Google Scholar 

  122. Tjung Ezra, Kularathna Shyamini, Kumar Krishna, Soga Kenichi (2019) Modeling irregular boundaries using isoparametric elements in the material point method. Geo-Congr 2020:09

    Google Scholar 

  123. Cortis Michael, Coombs William, Augarde Charles, Brown Michael, Brennan Andrew, Robinson Scott (2018) Imposition of essential boundary conditions in the material point method. Int J Numer Method Eng 113(1):130–152

    MathSciNet  Google Scholar 

  124. Abe Keita, Johansson Jörgen Alf Thure, Konagai Kazuo (2007) A new method for the run-out analysis and motion prediction of rapid and longtraveling landslides with MPM. Doboku Gakkai Ronbunshuu C 63(1):93–109

    Google Scholar 

  125. Abe K, Konagai K (2016) Numerical simulation for runout process of debris flow using depth-averaged material point method. Soils Found 56(5):869–888

    Google Scholar 

  126. Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 1. coulomb mixture theory. J Geophys Res Solid Earth 106(B1):537

    Google Scholar 

  127. Ikeda T, Kazmi ZA, Konagai K (2014) Field measurements and numerical simulation of Debris flows from dolomite slopes destabilized during the 2005 Kashmir earthquake Pakistan. J Earthq Eng 18(3):364–388

    Google Scholar 

  128. Wang B, Vardon PJ, Hicks MA, Chen Z (2016) Development of an implicit material point method for geotechnical applications. Comput Geotech 71:159–167

    Google Scholar 

  129. Cheng XS, Zheng G, Soga K, Bandara SS, Kumar K, Diao Y, Xu J (2015) Post-failure behavior of tunnel heading collapse by MPM simulation. Sci China Technol Sci 58(12):2139–2152

    Google Scholar 

  130. Fern EJ (2019) Modelling tunnel-induced deformations with the material point method. Comput Geotech 111:202–208

    Google Scholar 

  131. Liu Z, Koyi HA (2013) Kinematics and internal deformation of granular slopes: insights from discrete element modeling. Landslides 10(2):139–160

    Google Scholar 

  132. Potyondy DO, Cundall PA. (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1239–1364

    Google Scholar 

  133. Lo CM, Lin ML, Tang CL, Hu JC (2011) A kinematic model of the hsiaolin landslide calibrated to the morphology of the landslide deposit. Eng Geol 123:22–39

    Google Scholar 

  134. Lo CM, Lee CF, Chou HT, Lin ML (2014) Landslide at Su-Hua Highway 115.9k triggered by Typhoon Megi in Taiwan. Landslides 11(2):293–304

    Google Scholar 

  135. Cundall PA (1971) A computer model for simulating progressive, large-scale movement in blocky rock systems. Proc Int Symp Rock Fractures 1:2–8

    Google Scholar 

  136. Tang CL, Hu JC, Lin ML, Angelier J, Lu CY, Chan YC, Chu HT (2009) The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation. Eng Geol 106(1–2):1–19

    Google Scholar 

  137. Zhao T, Crosta GB (2018) On the dynamic fragmentation and lubrication of coseismic landslides. J Geophys Res-Solid Earth 123(11):9914–9932

    Google Scholar 

  138. Utili S, Nova R (2008) DEM analysis of bonded granular geomaterials. Int J Numer Anal Method Geomech 32(17):1997–2031

    MATH  Google Scholar 

  139. Jiang M, Jiang T, Crosta GB, Shi Z, Chen H, Zhang N (2015) Modeling failure of jointed rock slope with two main joint sets using a novel DEM bond contact model. Eng Geol 193:79–96

    Google Scholar 

  140. Jiang Mingjing, Chen He, Crosta Giovanni B (2015) Numerical modeling of rock mechanical behavior and fracture propagation by a new bond contact model. Int J Rock Mech Min Sci 78:175–189

    Google Scholar 

  141. Jiang MJ, Sun YG, Li LQ, Zhu HH (2012) Contact behavior of idealized granules bonded in two different interparticle distances: an experimental investigation. Mech Mater 55:1–15

    Google Scholar 

  142. Staron L (2007) Mobility of long-runout rock flows: a discrete numerical investigation. Geophys J Int 172(1):455–463

    Google Scholar 

  143. Chang KJ, Taboada A (2009) Discrete element simulation of the Jiufengershan rock-and-soilavalanche triggered by the 1999 Chi-Chi earthquake Taiwan. J Geophys Res Earth 114:F03003

    Google Scholar 

  144. Chen P (2017) Effects of microparameters on macroparameters of flat-jointed bonded-particle materials and suggestions on trial-and-error method. Geotech Geol Eng 35:663–677

    Google Scholar 

  145. Lin CH, Lin ML (2015) Evolution of the large landslide induced by Typhoon Morakot: a case study in the Butangbunasi River, southern Taiwan using the discrete element method. Eng Geol 197:172–187

    Google Scholar 

  146. Weng MC, Lo CM, Wu CH, Chuang TF (2015) Gravitational deformation mechanisms of slate slopes revealed by model tests and discrete element analysis. Eng Geol 189:116–132

    Google Scholar 

  147. Shen W, Zhao T, Zhao J, Dai F, Zhou GGD (2018) Quantifying the impact of dry debris flow against a rigid barrier by dem analyses. Eng Geol 241:86–96

    Google Scholar 

  148. Pirulli M, Mangeney A (2008) Results of back-analysis of the propagation of rock avalanches as a function of the assumed rheology. Rock Mech Rock Eng 41(1):59–84

    Google Scholar 

  149. Li WC, Li HJ, Dai FC, Lee LM (2012) Discrete element modeling of a rainfall-induced flowslide. Eng Geol 149:22–34

    Google Scholar 

  150. Thompson N, Bennett MR, Petford N (2009) Analyses on granular mass movement mechanics and deformation with distinct element numerical modeling: implications for large-scale rock and debris avalanches. Acta Geotech 4(4):233–247

    Google Scholar 

  151. Okura Y, Kitahara H, Sammori T (2000) Fluidization in dry landslides. Eng Geol 56(3):347–360

    Google Scholar 

  152. Zhou JW, Cui P, Fang H. (2013) Dynamic process analysis for the formation of Yangjiagou landslidedammed lake triggered by the Wenchuan earthquake China. Landslides 10(3):331–342

    Google Scholar 

  153. Valentino R, Barla G, Montrasio L (2008) Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests. Rock Mech Rock Eng 41(1):153–177

    Google Scholar 

  154. Katz O, Morgan JK, Aharonov E, Dugan B (2014) Controls on the size and geometry of landslides: insights from discrete element numerical simulations. Geomorphology 220:104–113

    Google Scholar 

  155. Pinheiro AL, Lana MS, Sobreira FG (2015) Use of the distinct element method to study flexural toppling at the Pico Mine, Brazil. Bull Eng Geol Environ 74(4):1177–1186

    Google Scholar 

  156. Zhao Lanhao, Liu Xunnan, Mao Jia, Shao Linyu, Li Tongchun (2019) Three-dimensional distance potential discrete element method for the numerical simulation of landslides. Landslides 17:361–377

    Google Scholar 

  157. Wu JH, Lin WK, Hu HT (2017) Assessing the impacts of a large slope failure using 3DEC: the Chiu-fen-erh-shan residual slope. Comput Geotech 88:32–45

    Google Scholar 

  158. Wu JH, Lin WK, Hu HT (2018) Post-failure simulations of a large slope failure using 3DEC: the Hsiendu-shan slope. Eng Geol 242:92–107

    Google Scholar 

  159. Hassan S, El Shamy U (2019) DEM simulations of the seismic response of granular slopes. Comput Geotech 112:230–244

    Google Scholar 

  160. Lin CH, Li HH, Weng MC (2018) Discrete element simulation of the dynamic response of a dip slope under shaking table tests. Eng Geol 243:168–180

    Google Scholar 

  161. Zou Zongxing, Tang Huiming, Xiong Chengren, Aijun Su, Robert E (2017) Kinetic characteristics of debris flows as exemplified by field investigations and discrete element simulation of the catastrophic Jiweishan rockslide, China. Geomorphology 295:1–15

    Google Scholar 

  162. Lu CY, Tang CL, Chan YC, Hu JC, Chi CC (2014) Forecasting landslide hazard by the 3D discrete element method: a case study of the unstable slope in the Lushan hot spring district, central Taiwan. Eng Geol 183:14–30

    Google Scholar 

  163. Wang S, Li X, Wang S (2017) Separation and fracturing in overlying strata disturbed by longwall mining in a mineral deposit seam. Eng Geol 266(30):257–266

    Google Scholar 

  164. Cheng Guanwen, Yang Tianhong, Liu Hongyuan, Wei Like, Zhao Yong, Liu Yilong, Qian Jiawei (2020) Characteristics of stratum movement induced by downward longwall mining activities in middle-distance multi-seam. Int J Rock Mech Min Sci 136:104517

    Google Scholar 

  165. Sun Y, Zuo J, Karakus M, Wang J (2019) Investigation of movement and damage of integral overburden during shallow coal seam mining. Int J Rock Mech Min Sci 117:63–75

    Google Scholar 

  166. Yao Q, Li X, Sun B, Ju M, Chen T, Zhou J, Liang S, Qu Q (2017) Numerical investigation of the effects of seam dip angle on coal wall stability. Int J Rock Mech Min Sci 100:298–309

    Google Scholar 

  167. Cheng G, Chen C, Li L, Zhu W, Yang T, Feng D, Ren B (2018) Numerical modelling of stratum movement at footwall induced by underground mining. Int J Rock Mech Min Sci 108:142–156

    Google Scholar 

  168. Alehossein Habib, Poulsen Brett A (2010) Stress analysis of longwall top coal caving. Int J Rock Mech Min Sci 47:30–41

    Google Scholar 

  169. Vakili A, Hebblewhite BK (2010) A new cavability assessment criterion for longwall top coal caving. Int J Rock Mech Min Sci 47:1317–1329

    Google Scholar 

  170. Gao F, Stead D, Coggan J (2014) Evaluation of coal longwall caving characteristics using an innovative UDEC trigon approach. Comput Geotech 55:1317–1329

    Google Scholar 

  171. Yang SQ, Chen M, Jing HW, Chen KF, Meng B (2017) A case study on large deformation failure mechanism of deep soft rock roadway in Xin’An coal mine China. Eng Geol 30:89–101

    Google Scholar 

  172. Gao F, Stead D, Kang H (2015) Numerical simulation of squeezing failure in a coal mine roadway due to mining-induced stresses. Rock Mech Rock Eng 48(4):1635–1645

    Google Scholar 

  173. Xu N, Zhang J, Tian H, Mei G, Ge Q (2016) Discrete element modeling of strata and surface movement induced by mining under open-pit final slope. Int J Rock Mech Min Sci 88:61–76

    Google Scholar 

  174. Regassa Bayisa, Nengxiong Xu, Mei Gang (2018) An equivalent discontinuous modeling method of jointed rock masses for DEM simulation of mining-induced rock movements. Int J Rock Mech Min Sci 108:1–14

    Google Scholar 

  175. Wang Chenlong, Zhang Changsuo, Zhao Xiaodong, Liao Lin, Zhang Shengli (2018) Dynamic structural evolution of overlying strata during shallow coal seam longwall mining. Int J Rock Mech Min Sci 103:20–32

    Google Scholar 

  176. Wang G, Wu M, Wang R, Xu H, Song X (2017) Height of the mining-induced fractured zone above a coal face. Eng Geol 216:140–152

    Google Scholar 

  177. Li X, Wang D, Li C, Liu Z (2019) Numerical simulation of surface subsidence and backfill material movement induced by underground mining. Adv Civil Eng 815:1–17

    Google Scholar 

  178. Mikael S, David S (2017) Discrete element modelling of footwall rock mass damage induced by sub-level caving at the Kiirunavaara Mine. Minerals 7(7):109

    Google Scholar 

  179. Barba TFV, Nordlund E (2013) Numerical analyses of the hangingwall failure due to sublevel caving: study case. Int J Min Miner Eng 4(3):201

    Google Scholar 

  180. Li Z, Wang JA (2011) Accident investigation of mine subsidence with application of particle flow code. Proc Eng 26:1698–1704

    Google Scholar 

  181. Stewart JA (2006) Review of validation of the discontinuous deformation analysis (DDA) method. Int J Numer Anal Method Geomech 30(4):271–305

    MATH  Google Scholar 

  182. Doolin DM, Sitar N (2002) Displacement accuracy of discontinuous deformation analysis method applied to sliding block. J Eng Mech 128(11):1158–1168

    Google Scholar 

  183. Kamai R, Hatzor YH (2008) Numerical analysis of block stone displacements in ancient masonry structures: a new method to estimate historic ground motion. Int J Numer Anal Method Geomech 32:1321–1340

    MATH  Google Scholar 

  184. Tsesarsky M, Hatzor YH, Sitar N (2005) Dynamic displacement of a block on an inclined plane: analytical, experimental and dda results. Rock Mech Rock Eng 38(2):153–167

    Google Scholar 

  185. Maclaughlin M, Sitar N, Doolin DM, Abbot T (2001) Investigation of slope-stability kinematics using discontinuous deformation analysis. Int J Rock Mech Min Sci 38(5):753–762

    Google Scholar 

  186. Wang W, Zhang H, Zheng L, Zhang Y, Wu Y, Liu S (2017) A new approach for modeling landslide movement over 3D topography using 3D discontinuous deformation analysis. Comput Geotech 81:87–97

    Google Scholar 

  187. Zhang H, Chen G, Zheng L, Han Z, Zhang Y, Wu Y, Liu S (2015) Detection of contacts between three-dimensional polyhedral blocks for discontinuous deformation analysis. Int J Rock Mech Min Sci 78:57–73

    Google Scholar 

  188. Yeung QHJR (2004) A model of point-to-face contact for three-dimensional discontinuous deformation analysis. Rock Mech Rock Eng 37(2):95–116

    Google Scholar 

  189. Beyabanaki SAR, Mikola RG, Hatami K (2008) Three-dimensional discontinuous deformation analysis (3-D DDA) using a new contact resolution algorithm. Comput Geotech 35(3):346–356

    Google Scholar 

  190. Zhang H, Liu S, Han Z, Zheng L, Zhang Y, Wu Y, Li Y, Wang W (2016) A new algorithm to identify contact types between arbitrarily shaped polyhedral blocks for three dimensional discontinuous deformation analysis. Comput Geotech 80:1–15

    Google Scholar 

  191. Zhang H, Liu S, Zheng L, Zhong G, Lou S, Wu Y, Han Z (2016) Extensions of edge-to-edge contact model in three-dimensional discontinuous deformation analysis for friction analysis. Comput Geotech 71:261–275

    Google Scholar 

  192. Yeung MR, Jiang QH, Sun N (2007) A model of edge-to-edge contact for threedimensional discontinuous deformation analysis. Rock Mech Rock Eng 34(3):175–186

    Google Scholar 

  193. Jian-Hong Wu, Hsein Juang C, Lin Hung-Ming (2010) Vertex-to-face contact searching algorithm for three-dimensional frictionless contact problems. Int J Numer Method Eng 63(6):876–897

    MATH  Google Scholar 

  194. G. Shi. 2013 Basic theory of two dimensional and three dimensional contacts. Front Discontin Numer Method Pract Simul Eng Disaster Prev

  195. Ma S, Zhao Z, Nie W, Nemcik J, Zhang Z, Zhu X (2017) Implementation of displacement-dependent barton-bandis rock joint model into discontinuous deformation analysis. Comput Geotech 86:1–8

    Google Scholar 

  196. Nian TK, Zhang YJ, Wu H, Chen GQ, Zheng L (2020) Runout simulation of seismic landslides using discontinuous deformation analysis (DDA) with state-dependent shear strength model. Canad Geotech J 57(8):1183–1196

    Google Scholar 

  197. Irie K, Koyama T, Nishiyama S, Yasuda Y, Ohnishi Y (2012) A numerical study on the effect of shear resistance on the landslide by discontinuous deformation analysis (DDA). Geomech Geoeng 7(1):57–68

    Google Scholar 

  198. Wang J, Zhang Y, Chen Y, Wang Q, Zhao LH (2021) Back-analysis of donghekou landslide using improved DDA considering joint roughness degradation. Landslides 18(5):1925–35

    Google Scholar 

  199. Wang LZ, Jiang HY, Yang ZX, Xu YC, Zhu XB (2013) Development of discontinuous deformation analysis with displacement-dependent interface shear strength. Comput Geotech 47:91–101

    Google Scholar 

  200. Song Y, Huang D, Cen D (2016) Numerical modeling of the 2008 Wenchuan earthquake-triggered Daguangbao landslide using a velocity and displacement dependent friction law. Eng Geol 215:50–68

    Google Scholar 

  201. Pablo IJ, Hatzor YH (2018) Rapid sliding and friction degradation: lessons from the catastrophic vajont landslide. Eng Geol 244:96–106

    Google Scholar 

  202. Zhang H, Liu SG, Chen GQ, Lu Z, Sha L (2016) Extension of three-dimensional discontinuous deformation analysis to frictional-cohesive materials. Int J Rock Mech Min Sci 86:65–79

    Google Scholar 

  203. Chen KT, Wu JH (2018) Simulating the failure process of the xinmo landslide using discontinuous deformation analysis. Eng Geol 239:269–281

    Google Scholar 

  204. Huang D, Li YQ, Song YX, Xu Q, Pei XJ (2019) Insights into the catastrophic xinmo rock avalanche in maoxian county, China: combined effects of historical earthquakes and landslide amplification. Eng Geol 258:105158

    Google Scholar 

  205. Wu JH, Wang WN, Chang CS, Wang CL (2005) Effects of strength properties of discontinuities on the unstable lower slope in the Chiu-fen-erh-shan landslide Taiwan. Eng Geol 78:173–186

    Google Scholar 

  206. Do TN, Wu JH (2019) Simulating a mining-triggered rock avalanche using DDA: a case study in Nattai North Australia. Eng Geol 264:105386

    Google Scholar 

  207. Wu J-H, Chen J-H, Lu C-W (2013) Investigation of the Hsien-du-Shan rock avalanche caused by typhoon Morakot in 2009 at Kaohsiung county Taiwan. Int J Rock Mech Min Sci 60:148–159

    Google Scholar 

  208. Wu JH (2007) Applying discontinuous deformation analysis to assess the constrained area of the unstable Chiu-fen-erh-shan landslide slope. Int J Numer Anal Method Geomech 31:649–666

    Google Scholar 

  209. Sitar NM, Mary M, Doolin David M (2005) Influence of kinematics on landslide mobility and failure mode. J Geotech Geoenviron Eng 131(6):716–728

    Google Scholar 

  210. Zhang Y, Chen G, Zheng L, Li Y, Wu J (2013) Effects of near-fault seismic loadings on run-out of large-scale landslide: a case study. Eng Geol 166:216–236

    Google Scholar 

  211. Ning Y, Zhao Z (2012) A detailed investigation of block dynamic sliding by the discontinuous deformation analysis. Int J Numer Anal Method Geomech 37(15):2373–93

    Google Scholar 

  212. Hatzor YH, Feintuch A (2001) The validity of dynamic block displacement prediction using DDA. Int J Rock Mech Min Sci 38:599–606

    Google Scholar 

  213. Kong X, Liu J (2002) Dynamic failure numeric simulations of model concrete-faced rock-fill dam. Soil Dyn Earthq Eng 38:599–606

    Google Scholar 

  214. T. Sasaki, I. Hagiwara, Kohsuke Sasaki, R. Yoshinaka, Yuzo Ohnishi, and S. Nishiyama. 2013 Earthquake response analysis of rock-fall models by discontinuous deformation analysis. 1: 853–856

  215. Wu JH (2010) Seismic landslide simulations in discontinuous deformation analysis. Comput Geotech 37:594–601

    Google Scholar 

  216. Zhang Y, Wang J, Xu Q, Chen G, Zhao JX, Zheng L, Han Z, Yu P (2014) DDA validation of the mobility of earthquake-induced landslides. Eng Geol 194:38–51

    Google Scholar 

  217. Zheng L (2012) Numerical validation of multiplex acceleration model for earthquake induced landslides. Geomech Eng 4(1):39–53

    Google Scholar 

  218. Jian-Hong Wu, Lin Jeen-Shang, Chen Chao-Shi (2009) Dynamic discrete analysis of an earthquake-induced large-scale landslide. Int J Rock Mech Min Sci 46(2):397–407

    Google Scholar 

  219. Wu JH, Chen CH (2011) Application of DDA to simulate characteristics of the Tsaoling landslide. Comput Geotech 38(5):741–750

    Google Scholar 

  220. Kim YI, Amadei B, Pan E. (1999) Modeling the effect of water, excavation sequence and rock reinforcement with discontinuous deformation analysis. Int J Rock Mech Min Sci 36(7):949–970

    Google Scholar 

  221. Jiao YY, Zhang HQ, Tang HM, Zhang XL, Adoko AC, Tian HN (2014) Simulating the process of reservoir-impoundment-induced landslide using the extended DDA method. Eng Geol 182:37–48

    Google Scholar 

  222. Huang D, Song YX, Ma GW, Pei XJ, Huang RQ (2018) Numerical modeling of the 2008 Wenchuan earthquake-triggered Niumiangou landslide considering effects of pore-water pressure. Bull Eng Geol Environ 78(7):4713–29

    Google Scholar 

  223. Gerolymos Nikos, Gazetas George (2007) A model for grain-crushing-induced landslides-Application to Nikawa, Kobe 1995. Soil Dyn Earthq Eng 27(9):803–817

    Google Scholar 

  224. Guzzetti F, Crosta G, Detti R, Agliardi F (2002) STONE: a computer program for the three dimensional simulation of rockfalls. Comput Geosci 28:1079–1093

    Google Scholar 

  225. Wu JH, Ohnishi Y, Shi GH, Nishiyama S (2005) Theory of three-dimensional discontinuous deformation analysis and its application to a slope toppling at Amatoribashi Japan. Int J Geomech 5(3):179–195

    Google Scholar 

  226. Chen G, Zheng L, Zhang Y, Wu J (2013) Numerical simulation in rockfall analysis: a close comparison of 2-D and 3-D DDA. Rock Mech Rock Eng 46(3):527–541

    Google Scholar 

  227. Yang M, Fukawa T, Ohnishi Y, Nishiyama S, Mikiand S, Hirakawa Y, Mori S (2004) The application of 3-dimensional DDA with a spherical rigid block for rockfall simulation. Int J Rock Mech Min Sci 41(3):611–616

    Google Scholar 

  228. Liu G, Li J (2019) Research on the effect of tree barriers on rockfall using a three-dimensional discontinuous deformation analysis method. Int J Comput Method 17(8):1950046

    MATH  Google Scholar 

  229. Matsuyama H, Nishiyama S, Ohnishi Y (2011) Practical studies on rockfall simulation by DDA. J Rock Mech Geotech Eng 3(1):57–63

    Google Scholar 

  230. Ma K, Liu G, Xu N, Zhang Z, Feng B (2021) Motion characteristics of rockfall by combining field experiments and 3D discontinuous deformation analysis. Int J Rock Mech Min Sci 138:104591

    Google Scholar 

  231. Liu G, Li J (2018) A three-dimensional discontinuous deformation analysis method for investigating the effect of slope geometrical characteristics on rockfall behaviors. Int J Comput Method 15(6):1850122

    MathSciNet  MATH  Google Scholar 

  232. Zhu H, Wu W, Zhuang X, Cai Y, Rabczuk T (2016) Method for estimating normal contact parameters in collision modeling using discontinuous deformation analysis. Int J Geomech 17(5):E4016011

    Google Scholar 

  233. Wu JH, Ohnishi Y, Nishiyama S (2005) A development of the discontinuous deformation analysis for rock fall analysis. Int J Numer Anal Method Geomech 29(10):971–988

    MATH  Google Scholar 

  234. Zheng L, Chen G, Li Y, Zhang Y, Kasama K (2014) The slope modeling method with GIS support for rockfall analysis using 3D DDA. Geomech Geoeng 9(2):142–152

    Google Scholar 

  235. Gao YN, Gao F, Yeung MR, Jiang QH (2011) Numerical simulation of coal mining excavation based on discontinuous deformation analysis. Appl Mech Mater 138–139:187–192

    Google Scholar 

  236. Zuo JP, Peng SP, Li YJ, Chen ZH, Xie HP (2009) Investigation of karst collapse based on 3-D seismic technique and DDA method at Xieqiao coal mine China. Int J Coal Geol 78(4):276–287

    Google Scholar 

  237. Wu JH, Ohnishi Y, Nishiyama S (2004) Simulation of the mechanical behavior of inclined jointed rock masses during tunnel construction using discontinuous deformation analysis (DDA). Int J Rock Mech Min Sci 41:731–743

    Google Scholar 

  238. Do TN, Wu JH, Lin HM (2017) Investigation of sloped surface subsidence during inclined seam extraction in a jointed rock mass using discontinuous deformation analysis. Int J Geomech 17:04017021

    Google Scholar 

  239. Zuo JP, Sun YJ, Li YC, Wang JT, Wei X, Fan L. (2017) Rock strata movement and subsidence based on MDDA, an improved discontinuous deformation analysis method in mining engineering. Arab J Geosci 10(18):395

    Google Scholar 

  240. Børve S, Omang M, Trulsen J (2005) Regularized smoothed particle hydrodynamics with improved multiresolution handling. J Comput Phys 208(1):345–367

    MathSciNet  MATH  Google Scholar 

  241. Xu F, Zhao Y, Yan R, Furukawa T (2013) Multidimensional discontinuous SPH method and its application to metal penetration analysis. Int J Numer Method Eng 93(11):1125–1146

    MathSciNet  MATH  Google Scholar 

  242. Rogers DB, Garcia-Feal O, Gomez-Gesteira M, Vacondio R, Dominguez MJ (2015) DualSPHysics: open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH). Comput Phys Commun 187:204–216

    MATH  Google Scholar 

  243. CentroidLab. http://neutrinodynamics.com/

  244. Ganzenmuller Georg C, Steinhauser Martin O (2011) The implementation of smooth particle hydrodynamics in LAMMPS. Paul Van Liedekerke Katholieke Universiteit Leuven 1:1–26

    Google Scholar 

  245. Blender. https://github.com/InteractiveComputerGraphics/SPlisHSPlasH

  246. Ma S, Zhang X, Qiu XM (2009) Comparison study of MPM and SPH in modeling hypervelocity impact problems. Int J Impact Eng 36(2):272–282

    Google Scholar 

  247. Tran QA, Sołowski W (2019) Generalized interpolation material point method modelling of large deformation problems including strain-rate effects-application to penetration and progressive failure problems. Comput Geotech 106:249–265

    Google Scholar 

  248. Ma J, Lu H, Wang B, Roy S, Hornung R, Wissink A, Komanduri R (2005) Multiscale simulations using generalized interpolation material point (GIMP) method and SAMRAI parallel processing. Comput Model Eng Sci 8(2):135–152

    MATH  Google Scholar 

  249. Steffen M, Kirby RM, Berzins M (2008) Analysis and reduction of quadrature errors in the material point method (MPM). Int J Numer Method Eng 76:922–948

    MathSciNet  MATH  Google Scholar 

  250. Zhang DZ, Xia M, Giguere PT (2011) Material point method enhanced by modified gradient of shape function. J Comput Phys 230(16):6379–6398

    MathSciNet  MATH  Google Scholar 

  251. Sadeghirad A, Brannon RM, Burghardt J (2011) A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int J Numer Method Eng 86:1435–1456

    MathSciNet  MATH  Google Scholar 

  252. Liang Dongfang, Zhao Xuanyu, Soga Kenichi (2020) Simulation of overtopping and seepage induced dike failure using two-point MPM. Soils Found 60(4):978–988

    Google Scholar 

  253. Raydel Lorenzo, Renato P. Cunha, and Manoel P. Cordao Neto. (2013) Materal point method for geotechnical problems involving large deformation. Particle-based methods III: Fundamentals and applications, 510–521

  254. CB-Geo. https://github.com/cb-geo/mpm

  255. Parker Steven G, Guilkey James, Harman Todd (2006) A component-based parallel infrastructure for the simulation of fluid-structure interaction. Eng Comput 22(3–4):277–292

    Google Scholar 

  256. de Vaucorbeil Alban, Nguyen Vinh Phu, Nguyen-Thanh Chi (2021) Karamelo: an open source parallel C++ package for the material point method. Comput Part Mech 8:767–789

    Google Scholar 

  257. Liu C, Pollard DD, Gu K, Shi B (2015) Mechanism of formation of wiggly compaction bands in porous sandstone: 2. Numerical simulation using discrete element method. J Geophys Res: Solid Earth 120(12):8153–8168

    Google Scholar 

  258. Haustein M, Gladkyy A, Schwarze R (2017) Discrete element modeling of deformable particles in YADE. SoftwareX 6:118–123

    Google Scholar 

  259. Yan Zelin, Dai Feng, Liu Yi, Feng Peng (2019) Experimental and numerical investigation on the mechanical properties and progressive failure mechanism of intermittent multi-jointed rock models under uniaxial compression. Arab J Geosci 12(22):1–24

    Google Scholar 

  260. Wei Han, Zhao Yanhong, Zhang Jian, Saxen Henrik, Yaowei Yu (2017) LIGGGHTS and EDEM application on charging system of ironmaking blast furnace. Adv Powder Technol 28(10):2482–2487

    Google Scholar 

  261. Cheng XL, Xiao J, Miao QH, Wang Y (2015) Design and implementation of a software architecture for 3D-DDA. Sci China-Technol Sci 58(9):1604–1608

    Google Scholar 

  262. Cheng X L, Miao Q H, and Wang Y. 2013 Design and implementation of a software architecture for DDA. Proceedings of the 11th International conference on discontinuous deformation analysis, Fukuoka, Japan, 147–152

  263. Caumon G, Lepage F, Sword CH, Mallet JL (2004) Building and editing a sealed geological model. Math Geol 36(4):405–424

    MATH  Google Scholar 

  264. Xu N, Tian H (2009) Wire frame: a reliable approach to build sealed engineering geological models. Comput Geosci 35(8):1582–1591

    Google Scholar 

  265. Hicher Pierre-Yves, Shao Jian-Fu (2013) Constitutive modeling of soils and rocks. Wiley

  266. Kh Mohd Najmu Saquib Wani and Rakshanda Showkat. (2018) Soil constitutive models and their application in geotechnical engineering: a review. Int J Eng Res Technol, 07(04)

  267. Zhang QB, Zhao J (2018) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47(04):1411–1478

    Google Scholar 

  268. Gens Antonio, Sanchez Marcelo, Sheng Daichao (2006) On constitutive modelling of unsaturated soils. Acta Geotechn 1(3):137–147

    Google Scholar 

  269. Guanghua Yang (2018) Review of progress and prospect of modern constitutive theories for soils. Chin J Geotech Eng 40(8):1363–1372

    Google Scholar 

  270. Zhang X, Wang TS (2007) Computational dynamics. Tsinghua University Press, China

    Google Scholar 

  271. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. Hunan University Press, China

    MATH  Google Scholar 

  272. Xu N, Mei G, Qin J, Li Y, Xu L (2020) GeoMFree3D: a package of meshfree local Radial Point Interpolation Method (RPIM) for geomechanics. Comput Math Appl 81:113–132

    MATH  Google Scholar 

  273. Liu X, Wang Y (2021) Probabilistic simulation of entire process of rainfall-induced landslides using random finite element and material point methods with hydro-mechanical coupling. Comput Geotech 132:103989

    Google Scholar 

  274. Tao Z, Dai F, Xu NW (2017) Coupled DEM-CFD investigation on the formation of landslide dams in narrow rivers. Landslides 14(1):189–201

    Google Scholar 

  275. Sulsky D, Kaul A (2004) Implicit dynamics in the material-point method. Comput Method Appl Mech Eng 193(12/14):1137–1170

    MathSciNet  MATH  Google Scholar 

  276. Dong Y, Wang D, Randolphl MF (2015) A GPU parallel computing strategy for the material point method. Comput Geotech 66:31–38

    Google Scholar 

  277. Liu Minliang, Liang Liang, Sun Wei (2020) A generic physics-informed neural network-based constitutive model for soft biological tissues. Comput Method Appl Mech Eng 372:113402

    MathSciNet  MATH  Google Scholar 

  278. Mitchell TM (2003) Machine learning. McGraw-Hill, USA

    MATH  Google Scholar 

  279. Schmidhuber Jürgen (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Google Scholar 

  280. Yuhong Z, Wenxin H (2009) Application of artificial neural network to predict the friction factor of open channel flow. Commun Nonlinear Sci Numer Simul 14(5):2373–8

    Google Scholar 

  281. Brunton SL, Noack BR, Koumoutsakos P (2020) Machine learning for fluid mechanics. Ann Rev Fluid Mech 52:477–508

    MATH  Google Scholar 

  282. Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanics. Comp Method Appl Mech Eng 304:81–101

    MathSciNet  MATH  Google Scholar 

  283. An efficient multi-scale scheme for inelastic heterogeneous materials (2016) Zeliang Liu, M.A. Bessa, and Wing Kam Liu. Self-consistent clustering analysis. Comp Method Appl Mech Eng 306:319–341

    Google Scholar 

  284. Shun-chuan Wu, Jian-jin Jiao, Xiao-ping Zhang (2011) Research on mesomechanical parameters of rock and soil mass based on BP neural network. Rock Soil Mech 32(12):3821–3826

    Google Scholar 

  285. Yuxiang L, Dongdong W, Liheng F. (2021) A CNN-based approach for optimizing support selection of meshfree method. Chin J Solid Mech 42(3):302–319

    Google Scholar 

Download references

Acknowledgements

This research was jointly supported by the National Natural Science Foundation of China (11602235, 41772326), the Fundamental Research Funds for China Central Universities (2652018091). The authors would like to thank the editor and the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Mei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Mei, G. & Xu, N. Meshfree Methods in Geohazards Prevention: A Survey. Arch Computat Methods Eng 29, 3151–3182 (2022). https://doi.org/10.1007/s11831-021-09686-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09686-4

Navigation