Skip to main content
Log in

Review of Machine Learning Techniques for EEG Based Brain Computer Interface

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

A Correction to this article was published on 29 December 2021

This article has been updated

Abstract

A brain computer interface (BCI) framework uses computer algorithms to detect mental activity patterns and manipulate external devices. Because of its simplicity and non-invasiveness, one of the most commonly used imaging technologies is electroencephalography (EEG). The evaluative method used in assessing the output of an EEG-based BCI system is classifying EEG signals for particular applications. The growth of artificial intelligence technology inspired researchers to use machine learning (ML) techniques and deep learning (DL) approaches to classify EEG-based BCI. Machine learning techniques enable the brain computer interface to learn from the subject's brain with each new session, adapting the generated rules for classifying thoughts and thus improving the system's efficiency. The authors present a concentrated survey on the use of various ML/DL techniques in EEG-based BCI. Three EEG paradigms for classification are used: motor imagery, p300, and steady state evoked potential. In addition, the challenges that recent EEG-based BCI systems face are addressed based on ideal signal processing methods, BCI functioning, performance assessment and commercialization. The authors hope that the information gathered would aid in application of suitable machine learning techniques, as well as provide a foundation for BCI researchers to enhance future BCI system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Volosyak I, Gembler F, Stawicki P (2017) Age-related differences in SSVEP-based BCI performance. Neurocomputing 250:57–64. https://doi.org/10.1016/j.neucom.2016.08.121

    Article  Google Scholar 

  2. Ramadan RA, Vasilakos AV (2017) Brain computer interface: control signals eview. Neurocomputing 223:26–44

    Article  Google Scholar 

  3. Aricò P, Borghini G, Di Flumeri G, Sciaraffa N, Babiloni F (2018) Passive BCI beyond the lab: current trends and future directions. Physiol Meas 39(8):08TR02

  4. Kamousi B, Amini AN, He B (2007) Classification of motor imagery by means of cortical current density estimation and Von Neumann entropy. J Neural Eng 4(2):17

    Article  Google Scholar 

  5. Birbaumer N (1999) Slow cortical potentials: plasticity, operant control, and behavioral effects. Neuroscientist 5(2):74–78

    Article  Google Scholar 

  6. Hoffmann U, Vesin JM, Ebrahimi T, Diserens K (2008) An efficient P300-based brain–computer interface for disabled subjects. J Neurosci Methods 167(1):115–125

    Article  Google Scholar 

  7. Middendorf M, McMillan G, Calhoun G, Jones KS (2000) Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehabil Eng 8(2):211–214

    Article  Google Scholar 

  8. Huang D, Qian K, Fei DY, Jia W, Chen X, Bai O (2012) Electroencephalography (EEG)-based brain–computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. IEEE Trans Neural Syst Rehabil Eng 20(3):379–388

    Article  Google Scholar 

  9. Höhne J, Tangermann M (2014) Towards user-friendly spelling with an auditory brain-computer interface: the charstreamer paradigm. PLoS ONE 9(6):e98322

  10. Kwak NS, Müller KR, Lee SW (2015) A lower limb exoskeleton control system based on steady state visual evoked potentials. J Neural Eng 12(5):056009

  11. Wolpaw JR, Wolpaw EW (2012) Brain-computer interfaces: something new under the sun. Brain–computer interfaces: principles and practice, 14

  12. Vidal JJ (1973) Toward direct brain–computer communication. Annu Rev Biophys Bioeng 2(1):157–180

    Article  Google Scholar 

  13. Fetz EE (1969) Operant conditioning of cortical unit activity. Science 163(3870):955–958

    Article  Google Scholar 

  14. Delgado JMR (1969) Physical control of the mind: toward a psychocivilized society, vol 41. World Bank Publications

  15. Pfurtscheller G, Müller-Putz GR, Scherer R, Neuper C (2008) Rehabilitation with brain-computer interface systems. Computer 41(10):58–65

    Article  Google Scholar 

  16. van Erp J, Lotte F, Tangermann M (2012) Brain-computer interfaces: beyond medical applications. Computer 45(4):26–34

    Article  Google Scholar 

  17. Aghaei AS, Mahanta MS, Plataniotis KN (2015) Separable common spatio-spectral patterns for motor imagery BCI systems. IEEE Trans Biomed Eng 63(1):15–29

    Article  Google Scholar 

  18. Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G et al (2000) Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng 8(2):164–173

    Article  Google Scholar 

  19. Lotte F, Bougrain L, Clerc M (2015) Electroencephalography (EEG)-based brain-computer interfaces. In: Webster J (ed) Wiley encyclopedia of electrical and electronics engineering. Wiley, Hoboken, pp 1–20. https://doi.org/10.1002/047134608X.W8278

  20. Bashashati A, Ward RK, Birch GE (2007) Towards development of a 3-state self-paced brain-computer interface. Comput Intell Neurosci 2007:84386. https://doi.org/10.1155/2007/84386

    Article  Google Scholar 

  21. Guger C, Allison B, Müller-Putz G (2015) Recent advances in braincomputer interface research—a summary of the BCI Award 2014 and BCI research trends. Brain-computer interface research. Springer, Berlin, pp 127–133

    Google Scholar 

  22. Hwang H-J et al (2013) EEG-based brain-computer interfaces: a thorough literature survey. Int J Hum Comput Interact 29(12):814–826

    Article  Google Scholar 

  23. Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication. Proc IEEE 89(7):1123–1134

    Article  Google Scholar 

  24. Schlögl A, Lee F, Bischof H, Pfurtscheller G (2005) Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J Neural Eng 2(4):L14

    Article  Google Scholar 

  25. Handy TC (ed) (2005) Event-related potentials: a methods handbook. MIT press, Cambridge

  26. Beverina F, Palmas G, Silvoni S, Piccione F, Giove S (2003) User adaptive BCIs: SSVEP and P300 based interfaces. PsychNology J 1(4):331–354

    Google Scholar 

  27. Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X (2019) A comprehensive review of EEG-based brain–computer interface paradigms. J Neural Eng 16(1):011001

  28. Hamada K, Mori H, Shinoda H, Rutkowski TM (2014) Airborne ultrasonic tactile display brain-computer interface paradigm. arXiv preprint https://arxiv.org/abs/1404.4184

  29. Puntanen S (2013) Regression analysis by example, by Samprit Chatterjee, Ali S hadi. Int Stat Rev 81(2):308–308

    Article  Google Scholar 

  30. .https://inbrain.tech/the-role-of-machine-learning-in-bci/870/

  31. Bashivan P, Rish I, Yeasin M, Codella N (2015) Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint https://arxiv.org/abs/1511.06448

  32. Ramkumar P, Lawlor PN, Glaser JI, Wood DK, Phillips AN, Segraves MA, Kording KP (2016) Feature-based attention and spatial selection in frontal eye fields during natural scene search. J Neurophysiol 116(3):1328–1343

    Article  Google Scholar 

  33. Wu D, Xu Y, Lu BL (2020) Transfer learning for EEG-based brain-computer interfaces: a review of progress made since 2016. IEEE Trans Cogn Dev Syst

  34. Al-Saegh A, Dawwd SA, Abdul-Jabbar JM (2021) Deep learning for motor imagery EEG-based classification: a review. Biomed Signal Process Control 63:102172

  35. Cao Z (2020) A review of artificial intelligence for EEG-based brain−computer interfaces and applications. Brain 6(3):162–170

    Google Scholar 

  36. Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F (2018) A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng 15(3):031005

  37. Aggarwal S, Chugh N (2019) Signal processing techniques for motor imagery brain computer interface: a review. Array 1:100003

  38. Temiyasathit C (2014) Increase performance of four-class classification for motor-imagery based brain-computer interface. In: 2014 International conference on computer, information and telecommunication systems (CITS). IEEE, pp 1–5

  39. Baig MZ, Aslam N, Shum HP, Zhang L (2017) Differential evolution algorithm as a tool for optimal feature subset selection in motor imagery EEG. Exp Syst Appl 90:184–195

    Article  Google Scholar 

  40. Kumar S, Sharma A, Tsunoda T (2017) An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information. BMC Bioinform 18(16):125–137

    Google Scholar 

  41. Aler R, Galván IM, Valls JM (2010) Evolving spatial and frequency selection filters for brain-computer interfaces. In: IEEE congress on evolutionary computation. IEEE, pp 1–7

  42. Islam MR, Tanaka T, Akter MS, Molla MKI (2017) Classification of motor imagery BCI using multiband tangent space mapping. In: 2017 22nd International conference on digital signal processing (DSP). IEEE, pp 1–5

  43. Ma Y, Ding X, She Q, Luo Z, Potter T, Zhang Y (2016) Classification of motor imagery EEG signals with support vector machines and particle swarm optimization. Computational and mathematical methods in medicine

  44. Oikonomou VP, Georgiadis K, Liaros G, Nikolopoulos S, Kompatsiaris I (2017). A comparison study on EEG signal processing techniques using motor imagery EEG data. In 2017 IEEE 30th international symposium on computer-based medical systems (CBMS). IEEE, pp 781–786

  45. Friedman JH (1989) Regularized discriminant analysis. J Am Stat Assoc 84(405):165–175

    Article  MathSciNet  Google Scholar 

  46. Kim YJ, Kwak NS, Lee SW (2018) Classification of motor imagery for Ear-EEG based brain-computer interface. In: 2018 6th International conference on brain-computer interface (BCI). IEEE, pp 1–2

  47. Fu R, Tian Y, Bao T, Meng Z, Shi P (2019) Improvement motor imagery EEG classification based on regularized linear discriminant analysis. J Med Syst 43(6):1–13

    Article  Google Scholar 

  48. Wang H, Zhang Y (2016) Detection of motor imagery EEG signals employing Naïve Bayes based learning process. Measurement 86:148–158

    Article  Google Scholar 

  49. Zhang Y, Wang Y, Jin J, Wang X (2017) Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification. Int J Neural Syst 27(02):1650032

    Article  Google Scholar 

  50. Miao M, Zeng H, Wang A, Zhao C, Liu F (2017) Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: an sparse regression and weighted Naïve Bayesian classifier-based approach. J Neurosci Methods 278:13–24

    Article  Google Scholar 

  51. Sagee GS, Hema S (2017) EEG feature extraction and classification in multiclass multiuser motor imagery brain computer interface u sing Bayesian network and ANN. In: 2017 International conference on intelligent computing, instrumentation and control technologies (ICICICT). IEEE, pp 938–943

  52. Hamedi M, Salleh SH, Noor AM, Mohammad-Rezazadeh I (2014) Neural network-based three-class motor imagery classification using time-domain features for BCI applications. In; 2014 IEEE region 10 symposium. IEEE, pp 204–207

  53. Salazar-Varas R, Vazquez RA (2018) Evaluating spiking neural models in the classification of motor imagery EEG signals using short calibration sessions. Appl Soft Comput 67:232–244

    Article  Google Scholar 

  54. Jiao Y, Zhang Y, Chen X, Yin E, Jin J, Wang X, Cichocki A (2018) Sparse group representation model for motor imagery EEG classification. IEEE J Biomed Health Inform 23(2):631–641

    Article  Google Scholar 

  55. Lu N, Li T, Ren X, Miao H (2016) A deep learning scheme for motor imagery classification based on restricted Boltzmann machines. IEEE Trans Neural Syst Rehabil Eng 25(6):566–576

    Article  Google Scholar 

  56. Lee HK, Choi YS (2018) A convolution neural networks scheme for classification of motor imagery EEG based on wavelet time-frequency image. In: 2018 International conference on information networking (ICOIN). IEEE, pp 906–909

  57. Zhang J, Yan C, Gong X (2017) Deep convolutional neural network for decoding motor imagery based brain computer interface. In: 2017 IEEE International conference on signal processing, communications and computing (ICSPCC). IEEE, pp 1–5

  58. Amin SU, Alsulaiman M, Muhammad G, Mekhtiche MA, Hossain MS (2019) Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Futur Gener Comput Syst 101:542–554

    Article  Google Scholar 

  59. Sakhavi S, Guan C, Yan S (2015) Parallel convolutional-linear neural network for motor imagery classification. In: 2015 23rd European signal processing conference (EUSIPCO). IEEE, pp 2736–2740

  60. Ko W, Yoon J, Kang E, Jun E, Choi JS, Suk HI (2018) Deep recurrent spatio-temporal neural network for motor imagery based BCI. In: 2018 6th International conference on brain-computer interface (BCI). IEEE, pp 1–3

  61. Sakhavi S, Guan C, Yan S (2018) Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Trans Neural Net Learn Syst 29(11):5619–5629

    Article  MathSciNet  Google Scholar 

  62. Ha KW, Jeong JW (2019) Motor imagery EEG classification using capsule networks. Sensors 19(13):2854

    Article  Google Scholar 

  63. Luo TJ, Chao F (2018) Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network. BMC Bioinform 19(1):1–18

    Article  Google Scholar 

  64. Nair AV, Kumar KM, Mathew J (2018) An improved approach for EEG signal classification using autoencoder. In: 2018 8th international symposium on embedded computing and system design (ISED). IEEE, pp 6–10

  65. Uyulan C (2020) Development of LSTM&CNN based hybrid deep learning model to classify motor imagery tasks. bioRxiv.

  66. Kumar S, Sharma A, Tsunoda T (2019) Brain wave classification using long short-term memory network based OPTICAL predictor. Sci Rep 9(1):1–13

    Google Scholar 

  67. Nicolas-Alonso LF, Corralejo R, Gómez-Pilar J, Álvarez D, Hornero R (2014) Ensemble learning for classification of motor imagery tasks in multiclass brain computer interfaces. In: 2014 6th Computer science and electronic engineering conference (CEEC). IEEE, pp 79–84

  68. Bera S, Roy R, Sikdar D, Kar A, Mukhopadhyay R, Mahadevappal M (2018) A randomised ensemble learning approach for multiclass motor imagery classification using error correcting output coding. In: 2018 40th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 5081–5084

  69. Rashid M, Bari BS, Hasan MJ, Razman MAM, Musa RM, Ab Nasir AF, Majeed APA (2021) The classification of motor imagery response: an accuracy enhancement through the ensemble of random subspace k-NN. PeerJ Comput Sci 7:e374

  70. Cattan GH, Andreev A, Mendoza C, Congedo M (2019) A comparison of mobile VR display running on an ordinary smartphone with standard pc display for p300-bci stimulus presentation. IEEE Trans Games 2019:2957963. https://doi.org/10.1109/TG.2019.2957963

    Article  Google Scholar 

  71. Okahara Y, Takano K, Komori T, Nagao M, Iwadate Y, Kansaku K (2017) Operation of a P300-based brain-computer interface by patients with spinocerebellar ataxia. Clin Neurophysiol Pract 2:147–153. https://doi.org/10.1016/j.cnp.2017.06.004

    Article  Google Scholar 

  72. Flores C, Fonseca C, Achanccaray D, Andreu-Perez J (2018) Performance evaluation of a P300 brain-computer interface using a kernel extreme learning machine classifier. In: 2018 IEEE International conference on systems, man, and cybernetics (SMC) (Miyazaki), pp 3715–3719. https://doi.org/10.1109/SMC.2018.00629

  73. Guy V, Soriani M-H, Bruno M, Papadopoulo T, Desnuelle C, Clerc M (2018) Brain computer interface with the P300 speller: usability for disabled people with amyotrophic lateral sclerosis. Ann Phys Rehabil Med 61:5–11. https://doi.org/10.1016/j.rehab.2017.09.004

    Article  Google Scholar 

  74. Achanccaray D, Flores C, Fonseca C, Andreu-Perez J (2017) A P300- based brain computer interface for smart home interaction through an ANFIS ensemble. In: 2017 IEEE international conference on fuzzy systems (FUZZIEEE) (Naples), pp 1–5. https://doi.org/10.1109/FUZZ-IEEE.2017.8015770

  75. Aydin EA, Bay OF, Guler I (2018) P300-based asynchronous brain computer interface for environmental control system. IEEE J Biomed Health Inform 22:653–663. https://doi.org/10.1109/JBHI.2017.2690801

    Article  Google Scholar 

  76. Masud U, Baig MI, Akram F, Kim T (2017) A P300 brain computer interface based intelligent home control system using a random forest classifier. In: 2017 IEEE symposium series on computational intelligence (SSCI) (Honolulu), pp 1–5. https://doi.org/10.1109/SSCI.2017.8285449

  77. De Venuto D, Annese VF, Mezzina G (2018) Real-time P300-based bci in mechatronic control by using a multi-dimensional approach. IET Softw 12:418–424. https://doi.org/10.1049/iet-sen.2017.0340

    Article  Google Scholar 

  78. Stan A, Irimia DC, Botezatu NA, Lupu RG (2015) Controlling a hand orthosis by means of P300-based brain computer interface. In: 2015 E-Health and bioengineering conference (EHB). IEEE, pp 1–4

  79. Hashmi MFHMF, Kene JDKJD, Kotambkar DMKDM, Matte PMP, Keskar AGKAG (2021) An efficient and high accuracy P300 detection for brain computer interface system based on kernel principal component analysis

  80. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    Article  Google Scholar 

  81. Zhumadilova A, Tokmurzina D, Kuderbekov A, Abibullaev B (2017) Design and evaluation of a P300 visual brain-computer interface speller in cyrillic characters. In: 2017 26th IEEE international symposium on robot and human interactive communication (RO-MAN). IEEE, pp 1006–1011

  82. Akram F, Han SM, Kim TS (2015) An efficient word typing P300-BCI system using a modified T9 interface and random forest classifier. Comput Biol Med 56:30–36

    Article  Google Scholar 

  83. Sharma N (2017) Single-trial P300 classification using PCA with LDA, QDA and neural networks. arXiv preprint https://arxiv.org/abs/1712.01977

  84. Nurseitov D, Serekov A, Shintemirov A, Abibullaev B (2017) Design and evaluation of a P300-ERP based BCI system for real-time control of a mobile robot. In: 2017 5th International winter conference on brain-computer interface (BCI). IEEE, pp 115–120

  85. Cecotti H, Graser A (2010) Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans Pattern Anal Mach Intell 33(3):433–445

    Article  Google Scholar 

  86. Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ (2018) EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J Neural Eng 15(5):056013

  87. Cortez SA, Flores C, Andreu-Perez J (2020) Single-trial p300 classification using deep belief networks for a BCI system. In: 2020 IEEE XXVII international conference on electronics, electrical engineering and computing (INTERCON). IEEE, pp 1–4

  88. Maddula R, Stivers J, Mousavi M, Ravindran S, de Sa V (2017) Deep recurrent convolutional neural networks for classifying P300 BCI signals. GBCIC, 201

  89. Li F, Li X, Wang F, Zhang D, Xia Y, He F (2020) A novel P300 classification algorithm based on a principal component analysis-convolutional neural network. Appl Sci 10(4):1546

    Article  Google Scholar 

  90. Oralhan Z (2020) 3D input convolutional neural networks for P300 signal detection. IEEE Access 8:19521–19529

    Article  Google Scholar 

  91. Arican M, Polat K (2019) Pairwise and variance based signal compression algorithm (PVBSC) in the P300 based speller systems using EEG signals. Comput Methods Progr Biomed 176:149–157

    Article  Google Scholar 

  92. Kundu S, Ari S (2019) MsCNN: a deep learning framework for P300-based brain–computer interface speller. IEEE Trans Med Robot Bionics 2(1):86–93

    Article  Google Scholar 

  93. Kundu S, Ari S (2019b) P300 based character recognition using sparse autoencoder with ensemble of SVMs. Biocybern Biomed Eng 39(4):956–966

  94. Kundu S, Ari S (2020) P300 based character recognition using convolutional neural network and support vector machine. Biomed Signal Process Control 55:101645

  95. Yu T, Yu Z, Gu Z, Li Y (2015) Grouped automatic relevance determination and its application in channel selection for P300 BCIs. IEEE Trans Neural Syst Rehabil Eng 23(6):1068–1077

    Article  Google Scholar 

  96. Chaurasiya RK, Londhe ND, Ghosh S (2016) Binary DE-based channel selection and weighted ensemble of SVM classification for novel brain–computer interface using Devanagari script-based P300 speller paradigm. Int J Hum Comput Interact 32(11):861–877

    Article  Google Scholar 

  97. Kshirsagar GB, Londhe ND (2019) Weighted ensemble of deep convolution neural networks for single-trial character detection in devanagari-script-based P300 speller. IEEE Trans Cogn Dev Syst 12(3):551–560

    Article  Google Scholar 

  98. Gao W, Guan JA, Gao J, Zhou D (2015) Multi-ganglion ANN based feature learning with application to P300-BCI signal classification. Biomed Signal Process Control 18:127–137

    Article  Google Scholar 

  99. Vařeka L, Mautner P (2017) Stacked autoencoders for the P300 component detection. Front Neurosci 11:302

    Article  Google Scholar 

  100. Wu Q, Zhang Y, Liu J, Sun J, Cichocki A, Gao F (2019) Regularized group sparse discriminant analysis for P300-based brain–computer interface. Int J Neural Syst 29(06):1950002

    Article  Google Scholar 

  101. Nakanishi M, Wang Y, Chen X, Wang YT, Gao X, Jung TP (2017) Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans Biomed Eng 65(1):104–112

    Article  Google Scholar 

  102. Nguyen TH, Yang DL, Chung WY (2018) A high-rate BCI speller based on eye-closed EEG signal. IEEE Access 6:33995–34003

    Article  Google Scholar 

  103. Nguyen TH, Chung WY (2018) A single-channel SSVEP-based BCI speller using deep learning. IEEE Access 7:1752–1763

    Article  Google Scholar 

  104. Podmore JJ, Breckon TP, Aznan NK, Connolly JD (2019) On the relative contribution of deep convolutional neural networks for SSVEP-based bio-signal decoding in BCI speller applications. IEEE Trans Neural Syst Rehabil Eng 27(4):611–618

    Article  Google Scholar 

  105. Saboor A, Rezeika A, Stawicki P, Gembler F, Benda M, Grunenberg T, Volosyak I (2017) SSVEP-based BCI in a smart home scenario. In: International work-conference on artificial neural networks. Springer, Cham, pp 474–485

  106. Chen SC, Chen YJ, Zaeni IA, Wu CM (2017) A single-channel SSVEP-based BCI with a fuzzy feature threshold algorithm in a maze game. Int J Fuzzy Syst 19(2):553–565

    Article  Google Scholar 

  107. Martišius I, Damaševičius R (2016) A prototype SSVEP based real time BCI gaming system. Comput Intell Neurosci

  108. Chiuzbaian A, Jakobsen J, Puthusserypady S (2019) Mind controlled drone: an innovative multiclass SSVEP based brain computer interface. In: 2019 7th International winter conference on brain-computer interface (BCI). IEEE, pp 1–5

  109. Chen X, Zhao B, Wang Y, Gao X (2019) Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm. J Neural Eng 16(2):026012

  110. Kwak NS, Müller KR, Lee SW (2017) A convolutional neural network for steady state visual evoked potential classification under ambulatory environment. PLoS ONE 12(2);e0172578

  111. Singla R, Haseena BA (2014) Comparison of SSVEP signal classification techniques using SVM and ANN models for BCI applications. Int J Inf Electron Eng 4(1):6

    Google Scholar 

  112. Singla R, Haseena BA (2013) BCI based wheelchair control using steady state visual evoked potentials and support vector machines. Int J Soft Comput Eng (IJSCE) 3(3):46–52

    Google Scholar 

  113. Cecotti H (2011) A time–frequency convolutional neural network for the offline classification of steady-state visual evoked potential responses. Pattern Recogn Lett 32(8):1145–1153

    Article  Google Scholar 

  114. Waytowich N, Lawhern VJ, Garcia JO, Cummings J, Faller J, Sajda P, Vettel JM (2018) Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials. J Neural Eng 15(6):066031

  115. Li Y, Xiang J, Kesavadas T (2020) Convolutional correlation analysis for enhancing the performance of SSVEP-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng

  116. Zhu Y, Li Y, Lu J, Li P (2021) EEGNet with ensemble learning to improve the cross-session classification of SSVEP based BCI from Ear-EEG. IEEE Access 9:15295–15303

    Article  Google Scholar 

  117. Gao Z, Dang W, Liu M, Guo W, Ma K, Chen G (2020) Classification of EEG signals on VEP-based BCI systems with broad learning. IEEE Trans Syst Man Cybern Syst

  118. Jin J, Li S, Daly I, Miao Y, Liu C, Wang X et al (2020) The study of generic model set for reducing calibration time in P300-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 28:3–12. https://doi.org/10.1109/TNSRE.2019.2956488

    Article  Google Scholar 

  119. Faller J, Vidaurre C, Solis-Escalante T, Neuper C, Scherer R (2012) Autocalibration and recurrent adaptation: towards a plug and play online ERD-BCI. IEEE Trans Neural Syst Rehabil Eng 20(3):313–319

    Article  Google Scholar 

  120. Vidaurre C, Blankertz B (2010) Towards a cure for BCI illiteracy. Brain Topogr 23(2):194–198

    Article  Google Scholar 

  121. Lotte F, Jeunet C (2015) Towards improved BCI based on human learning principles. In: The 3rd International winter conference on brain-computer interface. IEEE, pp 1–4

  122. Vidaurre C, Murguialday AR, Haufe S, Gómez M, Müller KR, Nikulin VV (2019) Enhancing sensorimotor BCI performance with assistive afferent activity: an online evaluation. Neuroimage 199:375–386

    Article  Google Scholar 

  123. Gilbert F, Cook M, O’Brien T, Illes J (2019) Embodiment and estrangement: results from a first-in-human “intelligent BCI” trial. Sci Eng Ethics 25(1):83–96

    Article  Google Scholar 

  124. DiLorenzo DJ, Leyde KW, Kaplan D (2019) Neural state monitoring in the treatment of epilepsy: Seizure prediction—Conceptualization to first-in-man study. Brain Sci 9(7):156

    Article  Google Scholar 

  125. Brown T, Thompson MC, Herron J, Ko A, Chizeck H, Goering S (2016) Controlling our brains—a case study on the implications of brain-computer interface-triggered deep brain stimulation for essential tremor. Brain Comput Interfaces 3(4):165–170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nupur Chugh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, S., Chugh, N. Review of Machine Learning Techniques for EEG Based Brain Computer Interface. Arch Computat Methods Eng 29, 3001–3020 (2022). https://doi.org/10.1007/s11831-021-09684-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09684-6

Navigation