Skip to main content
Log in

Recent Researches on Nonlocal Elasticity Theory in the Vibration of Carbon Nanotubes Using Beam Models: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Understanding dynamic behavior of carbon nanotubes has been of interest to researchers because of its practical applications. Recent studies show that nonlocal elasticity theory gives better results in the vibration of carbon nanotubes. The necessity of nonlocal elasticity theory, calibration of nonlocal parameter and application of nonlocal elasticity theory in various studies related to vibration of carbon nanotubes are discussed. This review emphasizes the application of nonlocal elasticity theory in the vibration of carbon nanotubes considering various types of complicating effects, nonlinearity, functionally graded material and different beam theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature (London) 384:147

    Article  Google Scholar 

  2. Gibson RF, Ayorinde EO, Wen YF (2007) Vibrations of carbon nanotubes and their composites: a review. Compos Sci Technol 67:1

    Article  Google Scholar 

  3. Journet C, Picher M, Jourdain V (2012) Carbon nanotube synthesis: from large-scale production to atom-by-atom growth. Nanotechnology 23:142001

    Article  Google Scholar 

  4. Zhang T, Mubeen S, Myung NV, Deshusses MA (2008) Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19:332001

    Article  Google Scholar 

  5. Lim YS, Ahn JG, Joo T, Yee KJ, Haroz EH, Booshehri LG, Kono J (2009) Coherent lattice vibrations in small diameter single-walled carbon nanotubes. In: Conference on quantum electronics and laser science conference

  6. Lim YS, Yee KJ, Kim JH, Haŕoz EH, Shaver J, Kono J, Doorn SK, Hauge RH, Smalley RE (2006) Coherent lattice vibrations in single-walled carbon nanotubes. Nano Lett 6:2696

    Article  Google Scholar 

  7. Babic B, Furer J, Sahoo S, Farhangfar Sh, Schönenberger C (2003) Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes. Nano Lett 3:1577

    Article  Google Scholar 

  8. Chowdhury R, Adhikari S, Wanga CY, Scarpa F (2010) A molecular mechanics approach for the vibration of single-walled carbon nanotubes. Comput Mater Sci 48:730

    Article  Google Scholar 

  9. Georgantzinos SK, Giannopoulos GI, Anifantis NK (2009) An efficient numerical model for vibration analysis of single-walled carbon nanotubes. Comput Mech 43:731

    Article  MATH  Google Scholar 

  10. Zhang YY, Wang CM, Tan VBC (2009) Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics. Adv Appl Math Mech 1:89

    MathSciNet  Google Scholar 

  11. Qiu H, Shen R, Guo W (2011) Vibrating carbon nanotubes as water pumps. Nano Res 4:284

    Article  Google Scholar 

  12. Xiang P, Liew KM (2012) Free vibration analysis of microtubules based on an atomistic-continuum model. J Sound Vib 331:213

    Article  Google Scholar 

  13. Arghavan S, Singh AV (2011) On the vibrations of single-walled carbon nanotubes. J Sound Vib 330:3102

    Article  Google Scholar 

  14. Yan JW, Liew KM, He LH (2013) Free vibration analysis of single-walled carbon nanotubes using a higher-order gradient theory. J Sound Vib 332:3740

    Article  Google Scholar 

  15. Demir C, Civalek Ö, Akgöz B (2010) Free vibration analysis of carbon nanotubes based on shear deformable beam theory by discrete singular convolution technique. Math Comput Appl 15:57

    MATH  Google Scholar 

  16. Raichura A, Dutta M, Stroscio MA (2003) Quantized acoustic vibrations of single-wall carbon nanotube. J Appl Phys 94:4060

    Article  Google Scholar 

  17. Janghorban M (2011) Static and free vibration analysis of carbon nano wires based on Timoshenko beam theory using differential quadrature method. Lat Am J Solids Struct 8:463

    Article  Google Scholar 

  18. Cao G, Chen X, Kysar JW (2005) Strain sensing of carbon nanotubes: numerical analysis of the vibrational frequency of deformed single-wall carbon nanotubes. Phys Rev B 72:195412

    Article  Google Scholar 

  19. Farshi B, Assadi A, Alinia-ziazi A (2010) Frequency analysis of nanotubes with consideration of surface effects. Appl Phys Lett 96:093105

    Article  Google Scholar 

  20. Wang DH, Wang GF (2011) Surface effects on the vibration and buckling of double-nanobeam-systems. J Nanomater. doi:10.1155/2011/518706

    Google Scholar 

  21. Ambrosini D, Borbón F (2012) On the influence of the shear deformation and boundary conditions on the transverse vibration of multi-walled carbon nanotubes. Comput Mater Sci 53:214

    Article  Google Scholar 

  22. Wang CM, Tan VBC, Zhang YY (2006) Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J Sound Vib 294:1060

    Article  Google Scholar 

  23. Natsuki T, Ni Q, Endo M (2008) Analysis of the vibration characteristics of double-walled carbon nanotubes. Carbon 46:1570

    Article  Google Scholar 

  24. Yoon J, Ru CQ, Mioduchowski A (2003) Vibration of an embedded multiwall carbon nanotube. Compos Sci Technol 63:1533

    Article  Google Scholar 

  25. Aydogdu M (2008) Vibration of multi-walled carbon nanotubes by generalized shear deformation theory. Int J Mech Sci 50:837

    Article  MATH  Google Scholar 

  26. Wang L, Hu H, Guo W (2010) Thermal vibration of carbon nanotubes predicted by beam models and molecular dynamics. Proc R Soc A 466:2325

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang LF, Hu HY (2012) Thermal vibration of double-walled carbon nanotubes predicted via double-Euler-beam model and molecular dynamics. Acta Mech 223:2107

    Article  MathSciNet  MATH  Google Scholar 

  28. Cao G, Chen X, Kysar JW (2006) Thermal vibration and apparent thermal contraction of single-walledcarbon nanotubes. J Mech Phys Solids 54:1206

    Article  MATH  Google Scholar 

  29. Liu YP, Reddy JN (2011) A nonlocal curved beam model based on a modified couple stress theory. Int J Struct Stab Dyn 11:495

    Article  MathSciNet  MATH  Google Scholar 

  30. Park SK, Gao XL (2006) Bernoulli–Euler beam model based on a modified couple stress theory. J Micromech Microeng 16:2355

    Article  Google Scholar 

  31. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1

    Article  MathSciNet  MATH  Google Scholar 

  32. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10:233

    Article  MathSciNet  MATH  Google Scholar 

  33. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703

    Article  Google Scholar 

  34. Wang Q, Wang CM (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modeling carbon nanotubes. Nanotechnology 18:075702

    Article  Google Scholar 

  35. Duan WH, Wang CM, Zhang YY (2007) Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J Appl Phys 101:024305

    Article  Google Scholar 

  36. Arash B, Ansari R (2010) Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain. Phys E 42:2058

    Article  Google Scholar 

  37. Narendar S, Gopalakrishnan S (2012) A nonlocal continuum mechanics model to estimate the material property of single-walled carbon nanotubes. Int J Nanosci 11:1250007

    Article  Google Scholar 

  38. Wang Q, Han QK, Wen BC (2008) Estimate of material property of carbon nanotubes via nonlocal elasticity. Adv Theor Appl Mech 1:1

    Google Scholar 

  39. Narendar S, Mahapatra D, Gopalakrishnan S (2011) Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural mechanics, nonlocal elasticity and wave propagation. Int J Eng Sci 49:509

    Article  MathSciNet  MATH  Google Scholar 

  40. Huang LY, Han Q, Liang YJ (2012) Calibration of nonlocal scale effect parameter for bending single-layered graphene sheet under molecular dynamics. Nano Brief Rep Rev 7:1250033

    Google Scholar 

  41. Liang YJ, Han Q (2012) Prediction of nonlocal scale parameter for carbon nanotubes. Sci China Phys Mech Astron 55:1670

    Article  Google Scholar 

  42. Xu M (2006) Free transverse vibrations of nano-to-micron scale beams. Proc R Soc A 462:2977

    Article  MathSciNet  MATH  Google Scholar 

  43. Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41:305

    Article  Google Scholar 

  44. Lu P, Lee HP, Lu C, Zhang PQ (2006) Dynamic properties of flexural beams using a nonlocal elasticity model. J Appl Phys 99:073510

    Article  Google Scholar 

  45. Lu P (2007) Dynamic analysis of axially prestressed micro/nanobeam structures based on nonlocal beam theory, J Appl Phys 101:073504

    Article  Google Scholar 

  46. Arash B, Wang Q (2012) A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput Mater Sci 51:303

    Article  Google Scholar 

  47. Lu P, Lee HP, Lu C, Zhang PQ (2007) Application of nonlocal beam models for carbon nanotubes. Int J Solids Struct 44:5289

    Article  MATH  Google Scholar 

  48. Ghannadpour SAM, Mohammadi B, Fazilati J (2013) Bending, buckling and vibration problems of nonlocal Euler beams using Ritz. Compos Struct 96:584

    Article  Google Scholar 

  49. Ghannadpour SAM, Mohammadi B (2011) Vibration of nonlocal euler beams using Chebyshev polynomials. Key Eng Mater 471–472:1016

    Article  Google Scholar 

  50. Behera L, Chakraverty S (2013) Free vibration of Euler Bernoulli and Timoshenko using boundary characteristic orthogonal polynomials. Appl Nanosci. doi:10.1007/s13204-013-0202-4

    MATH  Google Scholar 

  51. Eltaher MA, Alshorbagy AE, Mahmoud FF (2013) Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Appl Math Model 37:4787

    Article  MathSciNet  Google Scholar 

  52. Phadikar JK, Pradhan SC (2010) Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput Mater Sci 49:492

    Article  Google Scholar 

  53. Thongyothee C, Chucheepsakul S, Li T (2013) Nonlocal elasticity theory for free vibration of single-walled carbon nanotubes. Adv Mater Res 747:257

    Article  Google Scholar 

  54. Loya J, Puente JL, Zaera R, Sáez JF (2009) Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model. J Appl Phys 105:044309

    Article  Google Scholar 

  55. Ansari R, Gholami R, Hosseini K, Sahmani S (2011) A sixth-order compact finite difference method for vibrational analysis of nanobeams embedded in an elastic medium based on nonlocal beam theory. Math Comput Model 54:2577

    Article  MathSciNet  MATH  Google Scholar 

  56. Murmu T, Pradhan SC (2009) Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory. Phys E 41:1451

    Article  Google Scholar 

  57. Pradhan SC, Murmu T (2010) Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever. Phys E 42:1944

    Article  Google Scholar 

  58. Ruiz JA, Loya J, Sáez JF (2012) Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory. Compos Struct 94:2990

    Article  Google Scholar 

  59. Murmu T, Adhikari S (2010) Scale-dependent vibration analysis of prestressed carbon nanotubes undergoing rotation. J Appl Phys 108:123507

    Article  Google Scholar 

  60. Şimşek M (2010) Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Phys E 43:182

    Article  Google Scholar 

  61. Wang B, Deng Z, Xu X, Wang Y (2013) Vibration analysis of embedded curved carbon nanotube subjected to a moving harmonic load based on nonlocal theory. Sci China Phys Mech Astron 43:486

    Article  Google Scholar 

  62. Soltani P, Dastjerdi HA, Farshidianfar A (2010) Thermo-mechanical vibration of a single-walled carbon nanotube embedded in a Pasternak medium based on nonlocal elasticity theory. In: 18th annual conference of mechanical engineering

  63. Mustapha KB, Zhong ZW (2010) The thermo-mechanical vibration of a single-walled carbon nanotube studied using the Bubnov–Galerkin method. Phys E 43:375

    Article  Google Scholar 

  64. Murmu T, Pradhan SC (2009) Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Comput Mater Sci 46:854

    Article  Google Scholar 

  65. Chang TP (2011) Thermal-nonlocal vibration and instability of single-walled carbon nanotubes conveying fluid. J Mech 27:567

    Article  Google Scholar 

  66. Soltani P, Kassaei A, Taherian M, Farshidianfar A (2012) Vibration of wavy single-walled carbon nanotubes based on nonlocal Euler Bernoulli and Timoshenko models. Int J Adv Struct Eng 4:1

    Article  Google Scholar 

  67. Lee HL, Chang WJ (2009) Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium. Phys E 41:529

    Article  Google Scholar 

  68. Rafiei M, Mohebpour SR, Daneshmand F (2012) Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium. Phys E 44:1372

    Article  Google Scholar 

  69. Wang L (2009) Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory. Phys E 41:1835

    Article  Google Scholar 

  70. Wang L (2010) Vibration analysis of fluid-conveying nanotubes with consideration of surface effects. Phys E 43:437

    Article  Google Scholar 

  71. Mehdipour I, Soltani P, Ganji DD, Farshidianfar A (2011) Nonlinear vibration and bending instability of a single-walled carbon nanotube using nonlocal elastic beam theory. Int J Nanosci 10:447

    Article  Google Scholar 

  72. Shen HS, Zhang CL (2011) Nonlocal beam model for nonlinear analysis of carbon nanotubes on elastomeric substrates. Comput Mater Sci 50:1022

    Article  Google Scholar 

  73. Malekzadeh P, Shojaee M (2013) Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams. Compos Part B 52:84

    Article  Google Scholar 

  74. Soltani P, Farshidianfar A (2012) Periodic solution for nonlinear vibration of a fluid-conveying carbon nanotube based on the nonlocal continuum theory by energy balance method. Appl Math Model 36:3712

    Article  MathSciNet  MATH  Google Scholar 

  75. Yang XD, Lim CW (2009) Nonlinear vibrations of nano-beams accounting for nonlocal effect using a multiple scale method. Sci China Ser E-Tech Sci 52:617

    Article  MATH  Google Scholar 

  76. Eltaher MA, Alshorbagy AE, Mahmoud FF (2013) Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams. Compos Struct 99:193

    Article  Google Scholar 

  77. Eltaher MA, Emam SA, Mahmoud FF (2012) Free vibration analysis of functionally graded size-dependent nanobeams. Appl Math Comput 218:7406

    MathSciNet  MATH  Google Scholar 

  78. Yang Y, Zhang L, Lim CW (2012) Wave propagation in fluid-filled single-walled carbon nanotube on analytically nonlocal Euler–Bernoulli beam model. J Sound Vib 331:1567

    Article  Google Scholar 

  79. Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301

    Article  Google Scholar 

  80. Heireche H, Tounsi A, Benzair A, Maachou M, Bedia EA (2008) Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity. Phys E 40:2791

    Article  Google Scholar 

  81. He JH (2004) Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos Solitons Fractals 19:847

    Article  MathSciNet  MATH  Google Scholar 

  82. Adali S (2009) Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler–Bernoulli beam model. Nano Lett 9:1737

    Article  Google Scholar 

  83. Adali S (2009) Variational principles for multi-walled carbon nanotubes undergoing non-linear vibrations by semi-inverse method. Micro Nano Lett 4:198

    Article  Google Scholar 

  84. Ehteshami H, Hajabasi MA (2011) Analytical approaches for vibration analysis of multi-walled carbon nanotubes modeled as multiple nonlocal Euler beams. Phys E 44:270

    Article  Google Scholar 

  85. Karaoglu P, Aydogdu M (2010) On the forced vibration of carbon nanotubes via a nonlocal Euler Bernoulli beam model. Proc Inst Mech Eng Part C J Mech Eng Sci 224:497

    Article  Google Scholar 

  86. Shakouri A, Lin RM, Ng TY (2009) Free flexural vibration studies of double-walled carbon nanotubes with different boundary conditions and modeled as nonlocal Euler beams via the Galerkin method. J Appl Phys 106:094307

    Article  Google Scholar 

  87. Zhang YQ, Liu GR, Xie XY (2005) Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B 71:195404

    Article  Google Scholar 

  88. Murmu T, Adhikari S (2010) Nonlocal transverse vibration of double-nanobeamsystems. J Appl Phys 108:083514

    Article  Google Scholar 

  89. Murmu T, Adhikari S (2012) Nonlocal elasticity based vibration of initially pre-stressed coupled nanobeam systems. Eur J Mech A Solids 34:52

    Article  MathSciNet  MATH  Google Scholar 

  90. Şimşek M (2011) Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Comput Mater Sci 50:2112

    Article  Google Scholar 

  91. Murmu T, McCarthy MA, Adhikari S (2012) Nonlocal elasticity based magnetic field affected vibration response of double single-walled carbon nanotube systems. J Appl Phys 111:113511

    Article  Google Scholar 

  92. Murmu T, McCarthy MA, Adhikari S (2012) Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: a nonlocal elasticity approach. J Sound Vib 331:5069

    Article  Google Scholar 

  93. Wang L (2009) Dynamical behaviors of double-walled carbon nanotubes conveying fluid accounting for the role of small length scale. Comput Mater Sci 45:584

    Article  Google Scholar 

  94. Lee HL, Chang WJ (2009) Vibration analysis of fluid conveying double-walled carbon nanotubes based on nonlocal elastic theory. J Phys Condens Matter 21:115302

    Article  Google Scholar 

  95. Fang B, Zhen YX, Zhang CP, Tang Y (2013) Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory. Appl Math Model 37:1096

    Article  MathSciNet  MATH  Google Scholar 

  96. Ansari R, Ramezannezhad H, Gholami R (2012) Nonlocal beam theory for nonlinear vibrations of embedded multiwalled carbon nanotubes in thermal environment. Nonlinear Dyn 67:2241

    Article  MathSciNet  MATH  Google Scholar 

  97. Heireche H, Tounsi A, Benzair A (2008) Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading. Nanotechnology 19:185703

    Article  Google Scholar 

  98. Tounsi A, Heireche H, Berrabah HM, Benzair A, Boumia L (2008) Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field. J Appl Phys 104:104301

    Article  Google Scholar 

  99. Wang CM, Zhang YY, He XQ (2007) Vibration of nonlocal Timoshenko beams. Nanotechnology 18:105401

    Article  Google Scholar 

  100. Reddy JN, Pang SD (2008) Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J Appl Phys 103:023511

    Article  Google Scholar 

  101. Mohammadi B, Ghannadpour SAM (2011) Energy approach vibration analysis of nonlocal Timoshenko beam theory. Proc Eng 10:1766

    Article  Google Scholar 

  102. Behera L, Chakraverty S (2013) Vibration of nonhomogeneous Timoshenko nanobeams. Meccanica. doi:10.1007/s11012-013-9771-2

    MATH  Google Scholar 

  103. Li XF, Wang BL (2009) Vibrational modes of Timoshenko beams at small scales. Appl Phys Lett 94:101903

    Article  Google Scholar 

  104. Roque CMC, Ferreira AJM, Reddy JN (2011) Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. Int J Eng Sci 49:976

    Article  MATH  Google Scholar 

  105. Wang BL, Wang KF (2013) Vibration analysis of embedded nanotubes using nonlocal continuum theory. Compos Part B Eng 47:96

    Article  Google Scholar 

  106. Azrar A, Azrar L, Aljinaidi AA (2011) Length scale effect analysis on vibration behavior of single walled carbon nanotubes with arbitrary boundary conditions. Revue de Mécanique Appliquée et Théorique 2:475–485

    Google Scholar 

  107. Hu YG, Liew KM, Wang Q (2011) Nonlocal continuum model and molecular dynamics for free vibration of single-walled carbon nanotubes. J Nanosci Nanotechnol 11:10401

    Article  Google Scholar 

  108. Pradhan SC (2012) Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory. Finite Elem Anal Des 50:8

    Article  Google Scholar 

  109. Shen ZB, Sheng LP, Li XF, Tang GJ (2012) Nonlocal Timoshenko beam theory for vibration of carbon nanotube-based biosensor. Phys E 44:1169

    Article  Google Scholar 

  110. Pradhan SC, Murmu T (2009) Small-scale effect on vibration analysis of single-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory. J Appl Phys 105:124306

    Article  Google Scholar 

  111. Paola MD, Failla G, Sofi A, Zingales M (2012) On the vibrations of a mechanically based non-local beam model. Comput Mater Sci 64:278

    Article  Google Scholar 

  112. Lei Y, Adhikari S, Friswell MI (2013) Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams. Int J Eng Sci 66–67:1

    Article  MathSciNet  Google Scholar 

  113. Narendar S (2012) Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia. Appl Math Comput 219:1232

    MathSciNet  MATH  Google Scholar 

  114. Simsek M (2011) Forced vibration of an embedded single walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory. Steel Compos Struct 11:59

    Article  Google Scholar 

  115. Wang CM, Zhang YY, Kitipornchai S (2007) Vibration of initially stressed micro- and nano-beams. Int J Struct Stab Dyn 7:555

    Article  MathSciNet  MATH  Google Scholar 

  116. Pradhan SC, Mandal U (2013) Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect. Phys E 53:223

    Article  Google Scholar 

  117. Ke L, Wang YS (2012) Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater Struct 21:025018

    Article  Google Scholar 

  118. Zidour M, Benrahou KH, Semmah A, Naceri M, Belhadj HA, Bakhti K, Tounsi A (2012) The thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam theory. Comput Mater Sci 51:252

    Article  Google Scholar 

  119. Amirian B, Hosseini AR, Moosavi H (2012) Thermal vibration analysis of carbon nanotubes embedded in two-parameter elastic foundation based on nonlocal Timoshenko’s beam theory. Arch Mech 64:581

    MathSciNet  MATH  Google Scholar 

  120. Benzair A, Tounsi A, Besseghier A, Heireche H, Moulay N, Boumia L (2008) The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. J Phys D Appl Phys 41:225404

    Article  Google Scholar 

  121. Ghavanloo E, Fazelzadeh SA (2011) Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid. Phys E 44:17

    Article  Google Scholar 

  122. Lee HL, Chang WJ (2010) Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory. J Appl Phys 108:093503

    Article  Google Scholar 

  123. Wang B, Deng ZC, Zhang K (2013) Nonlinear vibration of embedded single-walled carbon nanotube with geometrical imperfection under harmonic load based on nonlocal Timoshenko beam theory. Appl Math Mech 34:269

    Article  MathSciNet  MATH  Google Scholar 

  124. Yang J, Ke LL, Kitipornchai S (2010) Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Phys E 42:1727

    Article  Google Scholar 

  125. Ke L, Wang YS, Wang ZD (2012) Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos Struct 94:2038

    Article  Google Scholar 

  126. Kucuk I, Sadek IS, Adali S (2010) Variational principles for multiwalled carbon nanotubes undergoing vibrations based on nonlocal timoshenko beam theory. J Nanomater. doi:10.1155/2010/461252

    Google Scholar 

  127. Hemmatnezhad M, Ansari R (2013) Finite element formulation for the free vibration analysis of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. J Theor Appl Phys 7:1

    Article  Google Scholar 

  128. Kucuk I, Sadek IS, Adali S (2010) Variational principles for multiwalled carbon nanotubes undergoing vibrations based on nonlocal Timoshenko beam theory. J Nanomater. doi:10.1155/2010/461252

    Google Scholar 

  129. Ece MC, Aydogdu M (2007) Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech 190:185

    Article  MATH  Google Scholar 

  130. Wang Q, Varadan VK (2006) Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct 15:659

    Article  Google Scholar 

  131. Ansari R, Ramezannezhad H (2011) Nonlocal Timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects. Phys E 43:1171

    Article  Google Scholar 

  132. Ke L, Xiang Y, Yang J, Kitipornchai S (2009) Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comput Mater Sci 47:409

    Article  Google Scholar 

  133. Wang Q, Zhou GY, Lin KC (2006) Scale effect on wave propagation of double-walled carbon nanotubes. Int J Solids Struct 43:6071

    Article  MATH  Google Scholar 

  134. Hu YG, Liew KM, Wang Q (2009) Nonlocal elastic beam models for flexural wave propagation in double-walled carbon nanotubes. J Appl Phys 106:044301

    Article  Google Scholar 

  135. Lim CW (2010) On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection. Appl Math Mech 31:37

    Article  MathSciNet  MATH  Google Scholar 

  136. Lee H, Chang W (2008) Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory. J Appl Phys 103:024302

    Article  Google Scholar 

  137. Tounsi A, Heireche H, Bedia EAA (2009) Comment on Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory. J Appl Phys 105:126105

    Article  Google Scholar 

  138. Wang L (2011) A modified nonlocal beam model for vibration and stability of nanotubes conveying fluid. Phys E 44:25

    Article  Google Scholar 

  139. Li C, Lim CW, Yu JL, Zeng QC (2011) Transverse vibration of pre-tensioned nonlocal nanobeams with precise internal axial loads. Sci China Technol Sci 54:2007

    Article  MATH  Google Scholar 

  140. Li C, Lim CW, Yu JL, Zeng QC (2011) Analytical solutions for vibration of simply supported nonlocalnanobeams with an axial force. Int J Struct Stab Dyn 11:257

    Article  MathSciNet  MATH  Google Scholar 

  141. Lim CW, Li C, Yu JL (2010) Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach. Acta Mech Sin 26:755

    Article  MathSciNet  MATH  Google Scholar 

  142. Lim CW, Wang CM (2007) Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams. J Appl Phys 101:054312

    Article  Google Scholar 

  143. Yang Y, Lim CW (2012) Non-classical stiffness strengthening size effects for free vibration of a nonlocal nanostructure. Int J Mech Sci 54:57

    Article  Google Scholar 

  144. Li C, Lim CW, Yu JL (2011) Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load. Smart Mater Struct 20:015023

    Article  Google Scholar 

  145. Lim CW, Li C, Yu JL (2012) Free torsional vibration of nanotubes based on nonlocal stress theory. J Sound Vib 331:2798

    Article  Google Scholar 

  146. Lim CW, Yang QJ (2011) Nonlocal thermal elasticity for nanobeam deformation: exact solution with stiffness enhancement effects. Appl Phys 110:013514

    Article  Google Scholar 

  147. Lim CW, Li C, Yu JL (2009) The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams. Interact Multiscale Mech 2:223

    Article  Google Scholar 

  148. Lim CW, Yang Y (2010) Wave propagation in carbon nanotubes: nonlocal elasticity induced stiffness and velocity enhancement effects. J Mech Mater Struct 5:459

    Article  Google Scholar 

  149. Yang Y, Zhang L, Lim CW (2011) Wave propagation in double-walled carbon nanotubes on a novel analytically nonlocal Timoshenko-beam model. J Sound Vib 330:1704

    Article  Google Scholar 

  150. Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288

    Article  MATH  Google Scholar 

  151. Aydogdu M (2009) A generalized nonlocal beam theory. Phys E 41:1651

    Article  Google Scholar 

  152. Thai HT (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52:56

    Article  MathSciNet  Google Scholar 

  153. Thai HT, Vo TP (2012) A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int J Eng Sci 54:58

    Article  MathSciNet  Google Scholar 

  154. Kiani K, Mehri B (2010) Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories. J Sound Vib 329:2241

    Article  Google Scholar 

  155. Nahvi H, Boroojeni ME (2013) Free vibrations of a rotating single walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Acta Phys Pol A 123:304

    Article  Google Scholar 

  156. Mustapha KB, Zhong ZW (2010) Free transverse vibration of an axially loaded non-prismatic single-walled carbon nanotube embedded in a two-parameter elastic medium. Comput Mater Sci 50:742–751

    Article  Google Scholar 

  157. Kiani K (2010) A meshless approach for free transverse vibration of embedded singlewalled nanotubes with arbitrary boundary conditions accounting for nonlocal effect. Int J Mech Sci 52:1343

    Article  Google Scholar 

  158. Uymaz B (2013) Forced vibration analysis of functionally graded beams using nonlocal elasticity. Compos Struct 105:227

    Article  Google Scholar 

  159. Kiani K (2011) Application of nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle. Acta Mech 216:165

    Article  MATH  Google Scholar 

  160. Kiani K (2013) Characterization of free vibration of elastically supported double-walled carbon nanotubes subjected to a longitudinally varying magnetic field. Acta Mech. doi:10.1007/s00707-013-0937-8

    MathSciNet  MATH  Google Scholar 

  161. Danesh M, Farajpour A, Mohammadi M (2012) Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mech Res Commun 39:23

    Article  MATH  Google Scholar 

  162. Aydogdu M (2012) Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mech Res Commun 43:34

    Article  Google Scholar 

  163. Aydogdu M, Filiz S (2011) Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity. Phys E 43:1229

    Article  Google Scholar 

  164. Aydogdu M (2009) Axial vibration of the nanorods with the nonlocal continuum rod model. Phys E 41:861

    Article  Google Scholar 

  165. Narendar S, Gopalakrishnan S (2011) Axial wave propagation in coupled nanorod system with nonlocal small scale effects. Compos Part B Eng 42:2013

    Article  Google Scholar 

  166. Filiz S, Aydogdu M (2010) Axial vibration of carbon nanotube heterojunctions using nonlocal elasticity. Comput Mater Sci 49:619

    Article  Google Scholar 

  167. Murmu T, Adhikari S (2011) Nonlocal vibration of carbon nanotubes with attached buckyballs at tip. Mech Res Commun 38:62

    Article  MATH  Google Scholar 

  168. Murmu T, Adhikari S (2010) Nonlocal effects in the longitudinal vibration of double-nanorod systems. Phys E 43:415

    Article  Google Scholar 

  169. Huang Z (2012) Nonlocal effects of longitudinal vibration in nanorod with internal long-range interactions. Int J Solids Struct 49:2150

    Article  Google Scholar 

  170. Murmu T, Adhikari S, Wang CY (2011) Torsional vibration of carbon nanotube buckyball systems based on nonlocal elasticity theory. Phys E 43:1276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chakraverty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, L., Chakraverty, S. Recent Researches on Nonlocal Elasticity Theory in the Vibration of Carbon Nanotubes Using Beam Models: A Review. Arch Computat Methods Eng 24, 481–494 (2017). https://doi.org/10.1007/s11831-016-9179-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9179-y

Keywords

Navigation