Skip to main content
Log in

Computational Fluid Dynamics in Turbomachinery: A Review of State of the Art

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Computational fluid dynamics (CFD) plays an essential role to analyze fluid flows and heat transfer situations by using numerical methods. Turbomachines involve internal and external fluid flow problems in compressors and turbines. CFD at present is one of the most important tools to design and analyze all types of turbomachinery. The main purpose of this paper is to review the state of the art work carried out in the field of turbomachinery using CFD. Literature review of research work pertaining to CFD analysis in turbines, compressors and centrifugal pumps are described. Various issues of CFD codes used in turbomachinery and its parallelization strategy adopted are highlighted. Furthermore, the prevailing merits and demerits of CFD in turbomachinery are provided. Open areas pertinent to CFD investigation in turbomachinery and CFD code parallelization are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www.cfdsupport.com/turbomachinery-cfd.html. Accessed 5 March 2016

  2. Adamczyk JJ (1999) Aerodynamic analysis of multistage turbomachinery flows in support of aerodynamic design. In: ASME 1999 international gas turbine and aeroengine congress and exhibition, pp V004T06A001–V004T06A001. American Society of Mechanical Engineers

  3. Afzal A, Ansari Z, Faizabadi AR, Ramis M (2016) Parallelization strategies for computational fluid dynamics software: state of the art review. Arch Comput Methods Eng 1–27: doi:10.1007/s11831-016-9165-4

    Google Scholar 

  4. Aghaei tog R, Tousi A, Tourani A (2008) Comparison of turbulence methods in CFD analysis of compressible flows in radial turbomachines. Aircr Eng Aerosp Technol 80(6):657–665

    Article  Google Scholar 

  5. Anagnostopoulos JS (2009) A fast numerical method for flow analysis and blade design in centrifugal pump impellers. Comput Fluids 38(2):284–289

    Article  MATH  Google Scholar 

  6. Ansari Z, Afzal A, Nayak S, Muhiuddeen M (2015) Literature survey for the comparative study of various high performance computing techniques. Int J Comput Trends Technol (IJCTT) 27(2):80–86

    Article  Google Scholar 

  7. Arnone MGMMA, Dominguez A (2015) A hybrid parallelization strategy of a cfd code for turbomachinery applications. In: 11th European turbomachinery conference, March 23–26, Madrid

  8. Asuaje M, Bakir F, Kouidri S, Kenyery F, Rey R (2005) Numerical modelization of the flow in centrifugal pump: volute influence in velocity and pressure fields. Int J Rotat Mach 2005(3):244–255

    Article  Google Scholar 

  9. Barton M, Mansour M, Liu J, Palmer D (2006) Numerical optimization of a vaned shroud design for increased operability margin in modern centrifugal compressors. J Turbomach 128(4):627–631

    Article  Google Scholar 

  10. Beaudoin M, Jasak H (2008) Development of a generalized grid interface for turbomachinery simulations with openfoam. In: Open source CFD international conference, vol 468, Berlin

  11. Becker K, Heitkamp K, Kügeler E (2010) Recent progress in a hybrid-grid CFD solver for turbomachinery flows. In: Proceedings fifth European conference on computational fluid dynamics ECCOMAS CFD, vol 2010

  12. Biesinger T, Cornelius C, Rube C, Braune A, Campregher R, Godin PG, Schmid G, Zori L (2010) Unsteady CFD methods in a commercial solver for turbomachinery applications. In: ASME Turbo Expo 2010: power for land, sea, and air, pp 2441–2452. American Society of Mechanical Engineers

  13. Blumenthal R, Hutchinson B, Zori L (2011) Investigation of transient CFD methods applied to a transonic compressor stage. In: ASME 2011 Turbo Expo: turbine technical conference and exposition, pp 1423–1430. American Society of Mechanical Engineers

  14. Bochette NJ (2005) Computational analysis of flow through a transonic compressor rotor. Ph.D. thesis, Naval Postgraduate School, Monterey

  15. Bonaiuti D, Zangeneh M, Aartojarvi R, Eriksson J (2010) Parametric design of a waterjet pump by means of inverse design, CFD calculations and experimental analyses. J Fluids Eng 132(3):031,104

    Article  Google Scholar 

  16. Buche D, Guidati G, Stoll P (2003) Automated design optimization of compressor blades for stationary, large-scale turbomachinery. In: ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference, pp 1249–1257. American Society of Mechanical Engineers

  17. Bunker RS (2001) A review of turbine blade tip heat transfer. Ann N Y Acad Sci 934(1):64–79

    Article  Google Scholar 

  18. Campanari S, Iora P (2004) Definition and sensitivity analysis of a finite volume sofc model for a tubular cell geometry. J Power Sources 132(1):113–126

    Article  Google Scholar 

  19. Cao S, Peng G, Yu Z (2005) Hydrodynamic design of rotodynamic pump impeller for multiphase pumping by combined approach of inverse design and CFD analysis. J Fluids Eng 127(2):330–338

    Article  Google Scholar 

  20. Caridad J, Kenyery F (2004) CFD analysis of electric submersible pumps (ESP) handling two-phase mixtures. J Energy Resour Technol 126(2):99–104

    Article  Google Scholar 

  21. Casartelli E, Mangani L (2013) Object-oriented open-source CFD for turbomachinery applications: a review and recent advances. In: ASME Turbo Expo 2013: Turbine technical conference and exposition, pp V06BT37A036–V06BT37A036. American Society of Mechanical Engineers

  22. Castillon L, Péron S, Benoit C, Billonnet G (2010) Numerical simulations of technological effects encountered on turbomachinery configurations with the chimera technique. In: 27th international congress of the aeronautical sciences, Nice

  23. Charalambous N, Ghisu T, Iurisci G, Pachidis V, Pilidis P (2004) Axial compressor response to inlet flow distortions by a cfd analysis. In: ASME Turbo Expo 2004: power for land, sea, and air, pp 1637–1649. American Society of Mechanical Engineers

  24. Chen B, Yuan X (2008) Advanced aerodynamic optimization system for turbomachinery. J Turbomach 130(2):021,005

    Article  MathSciNet  Google Scholar 

  25. Chen J, Briley W (2001) A parallel flow solver for unsteady multiple blade row turbomachinery simulations. In: ASME Turbo Expo 2001: power for land, sea, and air, pp V001T03A044–V001T03A044. American Society of Mechanical Engineers

  26. Chew JW, Hills NJ (2007) Computational fluid dynamics for turbomachinery internal air systems. Philos Trans R Soc Lond A Math Phys Eng Sci 365(1859):2587–2611

    Article  Google Scholar 

  27. Chima R (2002) Computational modeling of vortex generators for turbomachinery. In: ASME Turbo Expo 2002: power for land, sea, and air, pp 1229–1238. American Society of Mechanical Engineers

  28. Chima RV (2006) A three-dimensional unsteady CFD model of compressor stability. In: ASME Turbo Expo 2006: power for land, sea, and air, pp 1157–1168. American Society of Mechanical Engineers

  29. Chima RV, Liou MS (2003) Comparison of the AUSM+ and H-CUSP schemes for turbomachinery applications. In: AIAA Paper AIAA-2003-4120. Also NASA TM-2003-212457

  30. Chung T (2010) Computational fluid dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  31. Constantinescu G, Patel V (1998) Numerical model for simulation of pump-intake flow and vortices. J Hydraul Eng 124(2):123–134

    Article  Google Scholar 

  32. Cosden IA, Lukes JR (2013) A hybrid atomistic–continuum model for fluid flow using LAMMPS and OpenFOAM. Comput Phys Commun 184(8):1958–1965

    Article  Google Scholar 

  33. Dagnaa P, Hertzerb J (2013) Evaluation of multi-threaded OpenFOAM hybridization for massively parallel architectures. In: Tech. rep., Tech. Rep.[Online]. http://www.prace-ri.eu/IMG/pdf/wp98.pdf

  34. Denton J, Dawes W (1998) Computational fluid dynamics for turbomachinery design. Proc Inst Mech Eng Part C J Mech Eng Sci 213(2):107–124

    Article  Google Scholar 

  35. Deur J, Jonnavithula S, Meeks E (2001) The combination of detailed kinetics and CFD in automotive applications. In: Eleventh international engine combustion multi-dimensional modeling conference, Detroit

  36. Dhaubhadel M (1996) Review: CFD applications in the automotive industry. J Fluids Eng 118(4):647–653

    Article  Google Scholar 

  37. Dick E, Vierendeels J, Serbrugyns A, Voorde JV (2001) Performance prediction of centrifugal pumps with CFD-tools. Task Q 5:579–594

    Google Scholar 

  38. Dickmann HP, Wimmel TS, Szwedowicz J, Filsinger D, Roduner CH (2006) Unsteady flow in a turbocharger centrifugal compressor: three-dimensional computational fluid dynamics simulation and numerical and experimental analysis of impeller blade vibration. J Turbomach 128(3):455–465

    Article  Google Scholar 

  39. Ding H, Visser F, Jiang Y, Furmanczyk M (2011) Demonstration and validation of a 3d CFD simulation tool predicting pump performance and cavitation for industrial applications. J Fluids Eng 133(1):011,101

    Article  Google Scholar 

  40. Ekici K, Hall KC (2007) Nonlinear analysis of unsteady flows in multistage turbomachines using harmonic balance. AIAA J 45(5):1047–1057

    Article  Google Scholar 

  41. Fan J, Eves J, Thompson H, Toropov V, Kapur N, Copley D, Mincher A (2011) Computational fluid dynamic analysis and design optimization of jet pumps. Comput Fluids 46(1):212–217

    Article  MATH  Google Scholar 

  42. Fecarotta O, Carravetta A, Ramos H (2011) CFD and comparisons for a pump as turbine: mesh reliability and performance concerns. Int J Energy Environ 2(1):39–48

    Google Scholar 

  43. Felten FN, Kapetanovic S, Holmes DG, Ostrowski M (2008) Gas turbine temperature prediction using unsteady cfd and realistic non-uniform 2d combustor exit properties. In: ASME Turbo Expo 2008: power for land, sea, and air, pp 1725–1734. American Society of Mechanical Engineers

  44. Franke M, Röber T, Kügeler E, Ashcroft G (2010) Turbulence treatment in steady and unsteady turbomachinery flows. In: V European conference on computational fluid dynamics, ECCOMAS CFD, pp 14–17

  45. Fujun W (2005) Application of CFD to turbulent flow analysis and performance prediction in hydraulic machinery. J China Agric Univ 10(4):75

    Google Scholar 

  46. Gallimore SJ, Bolger JJ, Cumpsty NA, Taylor MJ, Wright PI, Place JM (2002) The use of sweep and dihedral in multistage axial flow compressor blading: part i—university research and methods development. In: ASME Turbo Expo 2002: power for land, sea, and air, pp 33–47. American Society of Mechanical Engineers

  47. Gazaix M, Mazet S, Montagnac M (2010) Large scale massively parallel computations with the block-structured elsA CFD software. In: Parallel computational fluid dynamics 2008. Springer, pp 111–117

  48. Gerhold T (2005) Overview of the hybrid RANS code TAU. In: Kroll N, Fassbender JK (eds) MEGAFLOW—numerical flow simulation for aircraft design. Springer, Berlin, pp 81–92

  49. Gupta S (2006) Performance evaluation and optimization of the unstructured CFD code uncle. University of Kentucky Master’s Theses

  50. Hall EJ, Heidegger NJ, Delaney RA (1996) Performance prediction of endwall treated fan rotors with inflow distortion. In: AIAA Paper, pp 96–0244

  51. Hall KC, Thomas JP, Clark WS (2002) Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA J 40(5):879–886

    Article  Google Scholar 

  52. Hamada K, Smith T, Durrani N, Qin N, Howell R (2008) Unsteady flow simulation and dynamic stall around vertical axis wind turbine blades. In: 46th AIAA aerospaces sciences meeting and exhibit, Reno

  53. He L, Chen T, Wells R, Li Y, Ning W (2002) Analysis of rotor–rotor and stator–stator interferences in multi-stage turbomachines. J Turbomach 124(4):564–571

    Article  Google Scholar 

  54. He L, Sato K (2001) Numerical solution of incompressible unsteady flows in turbomachinery. J Fluids Eng 123(3):680–685

    Article  Google Scholar 

  55. Hellström J, Marjavaara B, Lundström T (2007) Parallel CFD simulations of an original and redesigned hydraulic turbine draft tube. Adv Eng Softw 38(5):338–344

    Article  MATH  Google Scholar 

  56. Hills NJ, Chew JW, Turner AB (2001) Computational and mathematical modelling of turbine rim seal ingestion. In: ASME Turbo Expo 2001: power for land, sea, and air. American Society of Mechanical Engineers, pp V003T01A078–V003T01A078

  57. Horlock J, Denton J (2005) A review of some early design practice using computational fluid dynamics and a current perspective. J Turbomach 127(1):5–13

    Article  Google Scholar 

  58. Jafarzadeh B, Hajari A, Alishahi M, Akbari M (2011) The flow simulation of a low-specific-speed high-speed centrifugal pump. Appl Math Model 35(1):242–249

    Article  MATH  Google Scholar 

  59. Jasak H, Beaudoin M (2011) Openfoam turbo tools: from general purpose CFD to turbomachinery simulations. In: ASME-JSME-KSME 2011 joint fluids engineering conference. American Society of Mechanical Engineers, pp 1801–1812

  60. Jaworski Z, Dyster K, Nienow A (2001) The effect of size, location and pumping direction of pitched blade turbine impellers on flow patterns: LDA measurements and CFD predictions. Chem Eng Res Des 79(8):887–894

    Article  Google Scholar 

  61. Joubert H, Quiniou H (2000) Turbomachinery design used intensive CFD. In: 22nd congress of international council of the aeronautical sciences, vol 28

  62. Kaewnai S, Chamaoot M, Wongwises S (2009) Predicting performance of radial flow type impeller of centrifugal pump using CFD. J Mech Sci Technol 23(6):1620–1627

    Article  Google Scholar 

  63. Keck H, Sick M (2008) Thirty years of numerical flow simulation in hydraulic turbomachines. Acta Mech 201(1–4):211–229

    Article  MATH  Google Scholar 

  64. Kielb RE (2001) CFD for turbomachinery unsteady flowsan aeroelastic design perspective. In: AIAA paper, 429

  65. Kirtley K, Graziosi P, Wood P, Beacher B, Shin HW (2005) Design and test of an ultralow solidity flow-controlled compressor stator. J Turbomach 127(4):689–698

    Article  Google Scholar 

  66. Kwon J, Ecer A, Periaux J, Satofuka W, Fox P (2007) Aerodynamic optimization design system for turbomachinery based on parallelized 3d viscous numerical analysis. Parallel Comput Fluid Dyn 2006 Parallel Comput Its Appl 293

  67. Langtry RB, Menter FR (2009) Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J 47(12):2894–2906

    Article  Google Scholar 

  68. Larjola J, Backman J, Esa H, Pitkänen H, Sallinen P, Honkatukia J (2000) Centrifugal compressor design and testing in finnish high speed technology. In: ASME Intl. mechanical engineering congress & expo., November, pp 5–11

  69. Laursen J, Enevoldsen P, Hjort S (2007) 3d CFD quantification of the performance of a multi-megawatt wind turbine. J Phys Conf Ser 75:012007. IOP Publishing

  70. Lin Cl, Tawhai MH, McLennan G, Hoffman EA (2009) Computational fluid dynamics. Eng Med Biol Mag IEEE 28(3):25–33

    Article  Google Scholar 

  71. Liu Y, Claus RW, Litt JS, Guo TH (2013) Simulating effects of high angle of attack on turbofan engine performance. In: 51st AIAA aerospace sciences meeting

  72. Lucius A, Brenner G (2010) Unsteady CFD simulations of a pump in part load conditions using scale-adaptive simulation. Int J Heat Fluid Flow 31(6):1113–1118

    Article  Google Scholar 

  73. Luksch P (2000) Parallel and distributed implementation of large industrial applications. Future Gener Comput Syst 16(6):649–663

    Article  Google Scholar 

  74. Mai-Duy N, Tran-Cong T (2001) Numerical solution of Navier–Stokes equations using multiquadric radial basis function networks. Int J Numer Methods Fluids 37(1):65–86

    Article  MATH  Google Scholar 

  75. Medvitz RB, Kunz RF, Boger DA, Lindau JW, Yocum AM, Pauley LL (2002) Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD. J Fluids Eng 124(2):377–383

    Article  Google Scholar 

  76. Meng H, Wang CY (2004) Large-scale simulation of polymer electrolyte fuel cells by parallel computing. Chem Eng Sci 59(16):3331–3343

    Article  Google Scholar 

  77. Muggli FA, Holbein P, Dupont P (2002) CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow. J Fluids Eng 124(3):798–802

    Article  Google Scholar 

  78. Navarro MA, Santos AA (2011) Evaluation of a numeric procedure for flow simulation of a 5\(\times\) 5 PWR rod bundle with a mixing vane spacer. Prog Nucl Energy 53(8):1190–1196

    Article  Google Scholar 

  79. Nennemann B, Vu T, Farhat M (2005) CFD prediction of unsteady wicket gate–runner interaction in Francis turbines: a new standard hydraulic design procedure. In: HYDRO 2005, LMH-CONF-2006-006

  80. Oyama A, Liou MS, Obayashi S (2004) Transonic axial-flow blade optimization: evolutionary algorithms/three-dimensional Navier–Stokes solver. J Propuls Power 20(4):612–619

    Article  Google Scholar 

  81. Palacios F, Colonno MR, Aranake AC, Campos A, Copeland SR, Economon TD, Lonkar AK, Lukaczyk TW, Taylor TW, Alonso JJ (2013) Stanford university unstructured (su2): an open-source integrated computational environment for multi-physics simulation and design. AIAA Pap 287:2013

    Google Scholar 

  82. Pasaogullari U, Wang CY (2002) Computational fluid dynamics modeling of proton exchange membrane fuel cells using fluent. In: 2002 fluent users group meeting, Manchester

  83. Peigin S, Epstein B, Rubin T, Seror S (2004) Parallel large scale high accuracy Navier–Stokes computations on distributed memory clusters. J Supercomput 27(1):49–68

    Article  Google Scholar 

  84. Pierret S (2005) Multi-objective and multi-disciplinary optimization of three-dimensional turbomachinery blades. In: Proceedings of the 6th world congresses of structural and multidisciplinary optimization

  85. Puigt G, Gazaix M, Montagnac M, Le Pape MC, de la Llave Plata M, Marmignon C, Boussuge JF, Couaillier V (2011) Development of a new hybrid compressible solver inside the CFD elsA software. AIAA Pap 3379(2011):1–19

    Google Scholar 

  86. Reboul G, Polacsek C (2010) Towards numerical simulation of fan broadband noise aft radiation from aeroengines. AIAA J 48(9):2038–2048

    Article  Google Scholar 

  87. Ron-Ho N (2012) A multiple-grid scheme for solving the euler equations. AIAA J

  88. Sezer-Uzol N, Long LN (2006) 3-d time-accurate CFD simulations of wind turbine rotor flow fields. AIAA Pap 394:2006

    Google Scholar 

  89. Shahpar S, Lapworth L (2003) Padram: parametric design and rapid meshing system for turbomachinery optimisation. In: ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference. American Society of Mechanical Engineers, pp 579–590

  90. Simmendinger C, Kügeler E (2010) Hybrid parallelization of a turbomachinery CFD code: performance enhancements on multicore architectures. In: Proceedings of the V European conference on computational fluid dynamics ECCOMAS CFD

  91. Spence R, Amaral-Teixeira J (2009) A CFD parametric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifugal pump. Comput Fluids 38(6):1243–1257

    Article  MATH  Google Scholar 

  92. Stewart ME (2005) Towards a tool for rigorous, automated code comprehension using symbolic execution and semantic analysis. In: Software engineering workshop, 2005. 29th annual IEEE/NASA. IEEE, pp 89–96

  93. Stewart SF, Paterson EG, Burgreen GW, Hariharan P, Giarra M, Reddy V, Day SW, Manning KB, Deutsch S, Berman MR et al (2012) Assessment of CFD performance in simulations of an idealized medical device: results of FDAs first computational interlaboratory study. Cardiovasc Eng Technol 3(2):139–160

    Article  Google Scholar 

  94. Um S, Wang CY, Chen K (2000) Computational fluid dynamics modeling of proton exchange membrane fuel cells. J Electrochem Soc 147(12):4485–4493

    Article  Google Scholar 

  95. Wang JF, Piechna J, Mueller N (2012) A novel design of composite water turbine using CFD. J Hydrodyn Ser B 24(1):11–16

    Article  Google Scholar 

  96. Wang X, Hirsch C, Kang S, Lacor C (2011) Multi-objective optimization of turbomachinery using improved NSGA-II and approximation model. Comput Methods Appl Mech Eng 200(9):883–895

    Article  MathSciNet  MATH  Google Scholar 

  97. Wang YX, Zhang LL, Liu W, Che YG, Xu CF, Wang ZH, Zhuang Y (2013) Efficient parallel implementation of large scale 3D structured grid CFD applications on the Tianhe-1A supercomputer. Comput Fluids 80:244–250

    Article  Google Scholar 

  98. Westra R, Broersma L, Van Andel K, Kruyt N (2010) PIV measurements and CFD computations of secondary flow in a centrifugal pump impeller. J Fluids Eng 132(6):061,104

    Article  Google Scholar 

  99. Wu J, Shimmei K, Tani K, Niikura K, Sato J (2007) CFD-based design optimization for hydro turbines. J Fluids Eng 129(2):159–168

    Article  Google Scholar 

  100. Xin LYYY (2003) Blade stacking optimization based on GA and SQP methods. J Eng Thermophys 1:015

    Google Scholar 

  101. Xudong CHH, Song F (2006) CFD investigation on stall mechanisms and casing treatment of a transonic compressor

  102. Yang S, Kong F, Chen B (2011) Research on pump volute design method using CFD. Int J Rotat Mach. doi:10.1155/2011/137860

  103. Zhang DS, Shi WD, Bin C, GUAN XF (2010) Unsteady flow analysis and experimental investigation of axial-flow pump. J Hydrodyn Ser B 22(1):35–43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahid Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, R.N., Afzal, A., D’Souza, L.V. et al. Computational Fluid Dynamics in Turbomachinery: A Review of State of the Art. Arch Computat Methods Eng 24, 467–479 (2017). https://doi.org/10.1007/s11831-016-9175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9175-2

Keywords

Navigation