Skip to main content

Advertisement

Log in

Numerical Analysis of a Vortex Tube: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Ranque–Hilsch vortex tube is a simple devise with no moving parts which could generate cold and hot air/gas streams simultaneously with compressed air/gas as a working fluid. The energy and flow separation in a vortex tube is highly depends on factors like nozzle shape, nozzle number, diameter and length of the vortex tube, inlet pressure, control valve, diaphragm hole size and cold mass fraction. As the energy separation and flow patterns in a vortex tube are highly complex and were not explained successfully by any researcher, a computational study of vortex tube flow and energy separation will give a better understanding about the physics and mechanism involved. Many researchers conducted computational fluid dynamic analysis of the vortex to have a deep insight about the process of flow separation. In this paper computational analysis of vortex by many researchers were presented along with the results obtained and suggestions to improve the performance of the vortex tube. Researchers considered Turbulence models which predict the performance precisely were discussed in the present paper. Researchers considered turbulence models like LES, k–ε, k–ω and RMS to predict the energy separation in vortex tube. Some researchers considered artificial neural networks (ANN) and Taguchi methods for their analysis. Comparison of the predictions with simulation results were also presented to give a clear idea for the reader about the CFD models prediction capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69

Similar content being viewed by others

References

  1. Ahlborn B, Keller JU, Staudt R, Treitz G, Rebhan E (1994) Limits of temperature separation in a vortex tube. J Phys D Appl Phys 27(3):480

    Article  Google Scholar 

  2. Alekhin V, Bianco V, Khait A, Noskov A (2015) Numerical investigation of a double-circuit Ranque–Hilsch vortex tube. Int J Therm Sci 89:272–282

    Article  Google Scholar 

  3. Aljuwayhel NF, Nellis GF, Klein SA (2005) Parametric and internal study of the vortex tube using a CFD model. Int J Refrig 28(3):442–450

    Article  Google Scholar 

  4. Baghdad M, Ouadha A, Imine O, Addad Y (2011) Numerical study of energy separation in a vortex tube with different RANS models. Int J Therm Sci 50(12):2377–2385

    Article  Google Scholar 

  5. Behera U, Paul PJ, Dinesh K, Jacob S (2008) Numerical investigations on flow behaviour and energy separation in Ranque–Hilsch vortex tube. Int J Heat Mass Transf 51(25):6077–6089

    Article  MATH  Google Scholar 

  6. Behera U, Paul PJ, Kasthurirengan S, Karunanithi R, Ram SN, Dinesh K, Jacob S (2005) CFD analysis and experimental investigations towards optimizing the parameters of Ranque–Hilsch vortex tube. Int J Heat Mass Transf 48(10):1961–1973

    Article  Google Scholar 

  7. Bej N, Sinhamahapatra KP (2014) Exergy analysis of a hot cascade type Ranque–Hilsch vortex tube using turbulence model. Int J Refrig 45:13–24

    Article  Google Scholar 

  8. Berber A, Dincer K, Yılmaz Y, Ozen DN (2013) Rule-based Mamdani-type fuzzy modeling of heating and cooling performances of counter-flow Ranque–Hilsch vortex tubes with different geometric construction for steel. Energy 51:297–304

    Article  Google Scholar 

  9. Bovand M, Valipour MS, Dincer K, Tamayol A (2014) Numerical analysis of the curvature effects on Ranque–Hilsch vortex tube refrigerators. Appl Therm Eng 65(1):176–183

    Article  Google Scholar 

  10. Bovand M, Valipour MS, Eiamsa-ard S, Tamayol A (2014) Numerical analysis for curved vortex tube optimization. Int Commun Heat Mass Transf 50:98–107

    Article  Google Scholar 

  11. Bruun HH (1969) Experimental investigation of the energy separation in vortex tubes. J Mech Eng Sci 11(6):567–582

    Article  Google Scholar 

  12. Dutta T, Sinhamahapatra KP, Bandyopadhyay SS (2011) Numerical investigation of gas species and energy separation in the Ranque–Hilsch vortex tube using real gas model. Int J Refrig 34(8):2118–2128

    Article  Google Scholar 

  13. Dutta T, Sinhamahapatra KP, Bandyopdhyay SS (2010) Comparison of different turbulence models in predicting the temperature separation in a Ranque–Hilsch vortex tube. Int J Refrig 33(4):783–792

    Article  Google Scholar 

  14. Eiamsa-ard S, Promvonge P (2007) Numerical investigation of the thermal separation in a Ranque–Hilsch vortex tube. Int J Heat Mass Transf 50(5):821–832

    Article  MATH  Google Scholar 

  15. Eiamsa-ard S, Promvonge P (2008) Numerical simulation of flow field and temperature separation in a vortex tube. Int Commun Heat Mass Transf 35(8):937–947

    Article  MATH  Google Scholar 

  16. Entov VM, Kalashnikov VN, Raiskii YD (1967) Parameters which determine the vortex effect. Fluid Dyn 2(3):18–22

    Article  Google Scholar 

  17. Escudier MP, Keller J (1985) Recirculation in swirling flow-a manifestation of vortex breakdown. AIAA J 23(1):111–116

    Article  Google Scholar 

  18. Farouk T, Farouk B (2007) Large eddy simulations of the flow field and temperature separation in the Ranque–Hilsch vortex tube. Int J Heat Mass Transf 50(23):4724–4735

    Article  MATH  Google Scholar 

  19. Farouk T, Farouk B, Gutsol A (2009) Simulation of gas species and temperature separation in the counter-flow Ranque–Hilsch vortex tube using the large eddy simulation technique. Int J Heat Mass Transf 52(13):3320–3333

    Article  MATH  Google Scholar 

  20. Fröhlingsdorf W, Unger H (1999) Numerical investigations of the compressible flow and the energy separation in the Ranque–Hilsch vortex tube. Int J Heat Mass Transf 42(3):415–422

    Article  MATH  Google Scholar 

  21. Hardebol, J. (1960). U.S. Patent No. 2,955,432. Washington, DC: U.S. Patent and Trademark Office

  22. Hartnett JP, Eckert ERG (1957) Experimental study of the velocity and temperature distribution in a high-velocity vortex-type flow. Trans ASME 79(4):751–758

    Google Scholar 

  23. Kandil HA, Abdelghany ST (2015) Computational investigation of different effects on the performance of the Ranque–Hilsch vortex tube. Energy 84:207–218

    Article  Google Scholar 

  24. Khait AV, Noskov AS, Lovtsov AV, Alekhin VN (2014) Semi-empirical turbulence model for numerical simulation of swirled compressible flows observed in Ranque–Hilsch vortex tube. Int J Refrig 48:132–141

    Article  Google Scholar 

  25. Kocabas F, Korkmaz M, Sorgucu U, Donmez S (2010) Modeling of heating and cooling performance of counter flow type vortex tube by using artificial neural network. Int J Refrig 33(5):963–972

    Article  Google Scholar 

  26. Korkmaz ME, Gümüşel L, Markal B (2012) Using artificial neural network for predicting performance of the Ranque–Hilsch vortex tube. Int J Refrig 35(6):1690–1696

    Article  Google Scholar 

  27. Kumar GS, Padmanabhan G, Sarma BD (2014) Optimizing the temperature of hot outlet air of vortex tube using Taguchi method. Procedia Eng 97:828–836

    Article  Google Scholar 

  28. Kurosaka M (1982) Acoustic streaming in swirling flow and the Ranque—Hilsch (vortex-tube) effect. J Fluid Mech 124:139–172

    Article  Google Scholar 

  29. Lasheras JC, Choi H (1988) Three-dimensional instability of a plane free shear layer: an experimental study of the formation and evolution of streamwise vortices. J Fluid Mech 189:53–86

    Article  Google Scholar 

  30. Leibovich S (1984) Vortex stability and breakdown-survey and extension. AIAA J 22(9):1192–1206

    Article  Google Scholar 

  31. Lewins J, Bejan A (1999) Vortex tube optimization theory. Energy 24(11):931–943

    Article  Google Scholar 

  32. Liu X, Liu Z (2014) Investigation of the energy separation effect and flow mechanism inside a vortex tube. Appl Therm Eng 67(1):494–506

    Article  Google Scholar 

  33. Mihal CP (1981) Effect of heat stress on physiological factors for industrial workers performing routine work and wearing impermeable vapor-barrier clothing. Am Ind Hyg Assoc J 42(2):97–103

    Article  Google Scholar 

  34. Mohammadi S, Farhadi F (2014) Experimental and numerical study of the gas–gas separation efficiency in a Ranque–Hilsch vortex tube. Sep Purif Technol 138:177–185

    Article  Google Scholar 

  35. Ouadha A, Baghdad M, Addad Y (2013) Effects of variable thermophysical properties on flow and energy separation in a vortex tube. Int J Refrig 36(8):2426–2437

    Article  Google Scholar 

  36. Parulekar BB (1961) The short vortex tube. J Refrig 4(4):74–80

    Google Scholar 

  37. Pinar AM, Uluer O, Kırmaci V (2009) Optimization of counter flow Ranque–Hilsch vortex tube performance using Taguchi method. Int J Refrig 32(6):1487–1494

    Article  Google Scholar 

  38. Pouraria H, Zangooee MR (2012) Numerical investigation of vortex tube refrigerator with a divergent hot tube. Energy Procedia 14:1554–1559

    Article  Google Scholar 

  39. Pourmahmoud N, Hassanzadeh A, Moutaby O (2012) Numerical analysis of the effect of helical nozzles gap on the cooling capacity of Ranque–Hilsch vortex tube. Int J Refrig 35(5):1473–1483

    Article  Google Scholar 

  40. Rafiee SE, Rahimi M (2013) Experimental study and three-dimensional (3D) computational fluid dynamics (CFD) analysis on the effect of the convergence ratio, pressure inlet and number of nozzle intake on vortex tube performance-validation and CFD optimization. Energy 63:195–204

    Article  Google Scholar 

  41. Rafiee SE, Sadeghiazad MM (2014) Three-dimensional and experimental investigation on the effect of cone length of throttle valve on thermal performance of a vortex tube using k–ɛ turbulence model. Appl Therm Eng 66(1):65–74

    Article  Google Scholar 

  42. Saidi MH, Yazdi MA (1999) Exergy model of a vortex tube system with experimental results. Energy 24(7):625–632

    Article  Google Scholar 

  43. Secchiaroli A, Ricci R, Montelpare S, D’Alessandro V (2009) Numerical simulation of turbulent flow in a Ranque–Hilsch vortex tube. Int J Heat Mass Transf 52(23):5496–5511

    Article  MATH  Google Scholar 

  44. Shamsoddini R, Khorasani AF (2012) A new approach to study and optimize cooling performance of a Ranque–Hilsch vortex tube. Int J Refrig 35(8):2339–2348

    Article  Google Scholar 

  45. Shamsoddini R, Nezhad AH (2010) Numerical analysis of the effects of nozzles number on the flow and power of cooling of a vortex tube. Int J Refrig 33(4):774–782

    Article  Google Scholar 

  46. Simões-Moreira JR (2010) An air-standard cycle and a thermodynamic perspective on operational limits of Ranque–Hilsh or vortex tubes. Int J Refrig 33(4):765–773

    Article  Google Scholar 

  47. Skye HM, Nellis GF, Klein SA (2006) Comparison of CFD analysis to empirical data in a commercial vortex tube. Int J Refrig 29(1):71–80

    Article  Google Scholar 

  48. Stephan K, Lin S, Durst M, Huang F, Seher D (1984) A similarity relation for energy separation in a vortex tube. Int J Heat Mass Transf 27(6):911–920

    Article  Google Scholar 

  49. Takahama H, Yokosawa H (1981) Energy separation in vortex tubes with a divergent chamber. J Heat Transfer 103(2):196–203

    Article  Google Scholar 

  50. Thakare HR, Parekh AD (2014) CFD analysis of energy separation of vortex tube employing different gases, turbulence models and discretisation schemes. Int J Heat Mass Transf 78:360–370

    Article  Google Scholar 

  51. Thakare HR, Parekh AD (2015) Computational analysis of energy separation in counter: flow vortex tube. Energy 85:62–77

    Article  Google Scholar 

  52. Uluer O, Kırmacı V, Ataş Ş (2009) Using the artificial neural network model for modeling the performance of the counter flow vortex tube. Expert Syst Appl 36(10):12256–12263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Karthikeya Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeya Sharma, T., Amba Prasad Rao, G. & Madhu Murthy, K. Numerical Analysis of a Vortex Tube: A Review. Arch Computat Methods Eng 24, 251–280 (2017). https://doi.org/10.1007/s11831-016-9166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9166-3

Keywords

Navigation